Second Order Asymptotics for Infinite-Time Ruin Probability in a Compound Renewal Risk Model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11009-021-09862-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jianxi Lin, 2021. "Second order asymptotics for ruin probabilities of the delayed renewal risk model with heavy-tailed claims," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(5), pages 1200-1209, March.
- Baltrunas, A. & Daley, D. J. & Klüppelberg, C., 2004. "Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 237-258, June.
- Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
- Korshunov, Dmitry, 2018. "On subexponential tails for the maxima of negatively driven compound renewal and Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1316-1332.
- Dominik Kortschak & Enkelejd Hashorva, 2014. "Second Order Asymptotics of Aggregated Log-Elliptical Risk," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 969-985, December.
- Tang, Qihe & Su, Chun & Jiang, Tao & Zhang, Jinsong, 2001. "Large deviations for heavy-tailed random sums in compound renewal model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 91-100, March.
- Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.
- Lin, Jianxi, 2019. "Second order tail approximation for the maxima of randomly weighted sums with applications to ruin theory and numerical examples," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 37-47.
- Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
- Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
- Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
- Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.
- Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
- Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
- Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
- Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Yang Yang & Shuang Liu & Kam Chuen Yuen, 2022. "Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2600-2621, December.
- Yiqing Chen & Kam C. Yuen & Kai W. Ng, 2011. "Precise Large Deviations of Random Sums in Presence of Negative Dependence and Consistent Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 821-833, December.
- Lu, Dawei & Zhang, Bin, 2016. "Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 20-29.
- Baltrunas, Aleksandras & Leipus, Remigijus & Siaulys, Jonas, 2008. "Precise large deviation results for the total claim amount under subexponential claim sizes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1206-1214, August.
- Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
- Remigijus Leipus & Jonas Šiaulys, 2009. "Asymptotic behaviour of the finite‐time ruin probability in renewal risk models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 309-321, May.
- Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
- Jianxi Lin, 2012. "Second order Subexponential Distributions with Finite Mean and Their Applications to Subordinated Distributions," Journal of Theoretical Probability, Springer, vol. 25(3), pages 834-853, September.
- Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
- Zhaolei Cui & Yuebao Wang & Hui Xu, 2022. "Local Closure under Infinitely Divisible Distribution Roots and Esscher Transform," Mathematics, MDPI, vol. 10(21), pages 1-24, November.
- S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
- Dutang, C. & Lefèvre, C. & Loisel, S., 2013.
"On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing,"
Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
- Christophe Dutang & C. Lefevre & S. Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-01616175, HAL.
- Christophe Dutang & Claude Lefèvre & Stéphane Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-00746251, HAL.
- Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
More about this item
Keywords
Compound renewal risk model; Infinite-time ruin probability; Second order asymptotic behavior; Second order subexponential distribution; Crude Monte-Carlo simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09862-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.