IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v26y2000i2-3p157-173.html
   My bibliography  Save this article

Simple approximations of ruin probabilities

Author

Listed:
  • Grandell, Jan

Abstract

No abstract is available for this item.

Suggested Citation

  • Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
  • Handle: RePEc:eee:insuma:v:26:y:2000:i:2-3:p:157-173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(99)00050-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
    2. Thorin, Olof & Wikstad, Nils, 1977. "Calculation of Ruin Probabilities when the Claim Distribution is Lognormal," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 231-246, January.
    3. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    4. Wikstad, Nils, 1971. "Exemplification of Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 6(2), pages 147-152, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Covrig Mihaela & Serban Radu, 2008. "About Risk Process Estimation Techniques Employed By A Virtual Organization Which Is Directed Towards The Insurance Business," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 2(1), pages 841-847, May.
    2. Victor Korolev, 2022. "Bounds for the Rate of Convergence in the Generalized Rényi Theorem," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    3. Yacine Koucha & Alfredo D. Egidio dos Reis, 2021. "Approximations to ultimate ruin probabilities with a Wienner process perturbation," Papers 2107.02537, arXiv.org.
    4. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    5. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    6. Korolev, Victor & Zeifman, Alexander, 2021. "Bounds for convergence rate in laws of large numbers for mixed Poisson random sums," Statistics & Probability Letters, Elsevier, vol. 168(C).
    7. Krzysztof Burnecki & Marek A. Teuerle & Aleksandra Wilkowska, 2022. "Diffusion Approximations of the Ruin Probability for the Insurer–Reinsurer Model Driven by a Renewal Process," Risks, MDPI, vol. 10(6), pages 1-16, June.
    8. David J. Santana & Juan González-Hernández & Luis Rincón, 2017. "Approximation of the Ultimate Ruin Probability in the Classical Risk Model Using Erlang Mixtures," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 775-798, September.
    9. Avram, F. & Pistorius, M., 2014. "On matrix exponential approximations of ruin probabilities for the classic and Brownian perturbed Cramér–Lundberg processes," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 57-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    2. Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
    3. Ramsay, Colin M., 2003. "A solution to the ruin problem for Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 109-116, August.
    4. Baltru-nas, Aleksandras, 2005. "Second order behaviour of ruin probabilities in the case of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 485-498, June.
    5. Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
    6. Gyllenberg, Mats & S. Silvestrov, Dmitrii, 2000. "Cramer-Lundberg approximation for nonlinearly perturbed risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 75-90, February.
    7. Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.
    8. Pawel Mista, 2006. "Analytical and numerical approach to corporate operational risk modelling," HSC Research Reports HSC/06/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    9. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    10. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    11. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    12. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    13. repec:hal:wpaper:hal-00746251 is not listed on IDEAS
    14. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    15. De Vylder, F. Etienne & Goovaerts, Marc J., 1999. "Explicit finite-time and infinite-time ruin probabilities in the continuous case," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 155-172, May.
    16. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    17. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    18. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    19. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    20. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    21. Lehtomaa, Jaakko, 2015. "Limiting behaviour of constrained sums of two variables and the principle of a single big jump," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 157-163.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:26:y:2000:i:2-3:p:157-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.