IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i2p572-603.html
   My bibliography  Save this article

Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift

Author

Listed:
  • Kamphorst, Bart
  • Zwart, Bert

Abstract

This paper addresses heavy-tailed large-deviation estimates for the distribution tail of functionals of a class of spectrally one-sided Lévy processes. Our contribution is to show that these estimates remain valid in a near-critical regime. This complements recent similar results that have been obtained for the all-time supremum of such processes. Specifically, we consider local asymptotics of the all-time supremum, the supremum of the process until exiting [0,∞), the maximum jump until that time, and the time it takes until exiting [0,∞). The proofs rely, among other things, on properties of scale functions.

Suggested Citation

  • Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:2:p:572-603
    DOI: 10.1016/j.spa.2018.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491830053X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maulik, Krishanu & Zwart, Bert, 2006. "Tail asymptotics for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 156-177, February.
    2. Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
    3. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    4. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    5. Baltrunas, A. & Daley, D. J. & Klüppelberg, C., 2004. "Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 237-258, June.
    6. A. P. Zwart, 2001. "Tail Asymptotics for the Busy Period in the GI/G/1 Queue," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 485-493, August.
    7. Boxma, O. J., 1978. "On the longest service time in a busy period of the M[+45 degree rule]G[+45 degree rule]1 queue," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 93-100, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
    2. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    3. Yoni Nazarathy & Zbigniew Palmowski, 2022. "On busy periods of the critical GI/G/1 queue and BRAVO," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 219-225, October.
    4. Serguei Foss & Takis Konstantopoulos & Stan Zachary, 2007. "Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments," Journal of Theoretical Probability, Springer, vol. 20(3), pages 581-612, September.
    5. Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
    6. Yang Yang & Xinzhi Wang & Shaoying Chen, 2022. "Second Order Asymptotics for Infinite-Time Ruin Probability in a Compound Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1221-1236, June.
    7. Royi Jacobovic & Nikki Levering & Onno Boxma, 2023. "Externalities in the M/G/1 queue: LCFS-PR versus FCFS," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 239-267, August.
    8. Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.
    9. Kuznetsov, A., 2012. "On the distribution of exponential functionals for Lévy processes with jumps of rational transform," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 654-663.
    10. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    11. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    12. Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
    13. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    14. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    15. S. Foss & A. Sapozhnikov, 2004. "On the Existence of Moments for the Busy Period in a Single-Server Queue," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 592-601, August.
    16. Noba, Kei, 2021. "On the optimality of double barrier strategies for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 73-102.
    17. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    18. Kazutoshi Yamazaki, 2017. "Inventory Control for Spectrally Positive Lévy Demand Processes," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 212-237, January.
    19. Qingpei Zang & Lixin Zhang, 2019. "Asymptotic Behaviour of the Trajectory Fitting Estimator for Reflected Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 32(1), pages 183-201, March.
    20. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:2:p:572-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.