IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i4p1316-1332.html
   My bibliography  Save this article

On subexponential tails for the maxima of negatively driven compound renewal and Lévy processes

Author

Listed:
  • Korshunov, Dmitry

Abstract

We study subexponential tail asymptotics for the distribution of the maximum Mt≔supu∈[0,t]Xu of a process Xt with negative drift for the entire range of t>0. We consider compound renewal processes with linear drift and Lévy processes. For both processes we also formulate and prove the principle of a single big jump for their maxima. The class of compound renewal processes with drift particularly includes the Cramér–Lundberg renewal risk process.

Suggested Citation

  • Korshunov, Dmitry, 2018. "On subexponential tails for the maxima of negatively driven compound renewal and Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1316-1332.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:4:p:1316-1332
    DOI: 10.1016/j.spa.2017.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
    2. Korshunov, D., 1997. "On distribution tail of the maximum of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 97-103, December.
    3. Willekens, Eric, 1987. "On the supremum of an infinitely divisible process," Stochastic Processes and their Applications, Elsevier, vol. 26, pages 173-175.
    4. Bertoin, J. & Doney, R. A., 1994. "Cramer's estimate for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 363-365, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang & Xinzhi Wang & Shaoying Chen, 2022. "Second Order Asymptotics for Infinite-Time Ruin Probability in a Compound Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1221-1236, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
    2. Boxma, Onno & Kella, Offer & Mandjes, Michel, 2023. "On fluctuation-theoretic decompositions via Lindley-type recursions," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 316-336.
    3. Griffin, Philip S. & Roberts, Dale O., 2016. "Sample paths of a Lévy process leading to first passage over high levels in finite time," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1331-1352.
    4. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    5. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    6. Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
    7. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    8. Braverman, Michael, 1997. "Suprema and sojourn times of Lévy processes with exponential tails," Stochastic Processes and their Applications, Elsevier, vol. 68(2), pages 265-283, June.
    9. Griffin, Philip S., 2020. "General tax structures for a Lévy insurance risk process under the Cramér condition," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1368-1387.
    10. Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
    11. Wang, Yuebao & Yang, Yang & Wang, Kaiyong & Cheng, Dongya, 2007. "Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 256-266, March.
    12. Chaumont, Loïc & Rivero, Víctor, 2007. "On some transformations between positive self-similar Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1889-1909, December.
    13. Lehtomaa, Jaakko, 2015. "Limiting behaviour of constrained sums of two variables and the principle of a single big jump," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 157-163.
    14. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    15. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.
    16. Krzysztof Dȩbicki & Peng Liu & Michel Mandjes & Iwona Sierpińska-Tułacz, 2017. "Lévy-driven GPS queues with heavy-tailed input," Queueing Systems: Theory and Applications, Springer, vol. 85(3), pages 249-267, April.
    17. Griffin, Philip S. & Maller, Ross A. & Schaik, Kees van, 2012. "Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 382-392.
    18. Maulik, Krishanu & Zwart, Bert, 2006. "Tail asymptotics for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 156-177, February.
    19. Braverman, Michael & Samorodnitsky, Gennady, 1995. "Functionals of infinitely divisible stochastic processes with exponential tails," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 207-231, April.
    20. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:4:p:1316-1332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.