IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i4d10.1007_s10959-021-01143-z.html
   My bibliography  Save this article

Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model

Author

Listed:
  • Yang Yang

    (Nanjing Audit University)

  • Shuang Liu

    (Nanjing Audit University)

  • Kam Chuen Yuen

    (The University of Hong Kong)

Abstract

Consider a discrete-time risk model, in which an insurer makes both risk-free and risky investments. Within period k, the net loss is denoted by a real-valued random variable $$X_k$$ X k , and the stochastic discount factor is a bounded positive random variable $$Y_k$$ Y k . Assume that $$(X_k,Y_k), k\in {\mathbb {N}}$$ ( X k , Y k ) , k ∈ N , form a sequence of independent and identically distributed random pairs following a common bivariate Farlie–Gumbel–Morgenstern distribution with marginal distributions F on $${\mathbb {R}}$$ R and G on [a, b], respectively, for some $$0

Suggested Citation

  • Yang Yang & Shuang Liu & Kam Chuen Yuen, 2022. "Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2600-2621, December.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:4:d:10.1007_s10959-021-01143-z
    DOI: 10.1007/s10959-021-01143-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-021-01143-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-021-01143-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    2. Chen, Yiqing & Yuan, Zhongyi, 2017. "A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 75-81.
    3. Dyszewski, Piotr, 2016. "Iterated random functions and slowly varying tails," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 392-413.
    4. Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
    5. Jianxi Lin, 2012. "Second order Subexponential Distributions with Finite Mean and Their Applications to Subordinated Distributions," Journal of Theoretical Probability, Springer, vol. 25(3), pages 834-853, September.
    6. Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
    7. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    8. Lin, Jianxi, 2012. "Second order asymptotics for ruin probabilities in a renewal risk model with heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 422-429.
    9. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    10. Chen, Yiqing, 2017. "Interplay of subexponential and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 78-83.
    11. Li Zhu & Haijun Li, 2012. "Asymptotic Analysis of Multivariate Tail Conditional Expectations," North American Actuarial Journal, Taylor & Francis Journals, vol. 16(3), pages 350-363.
    12. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    13. Qing Liu & Tiantian Mao & Taizhong Hu, 2017. "Closure properties of the second-order regular variation under convolutions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 104-119, January.
    14. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    15. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    16. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    17. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    18. Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
    19. Lin, Jianxi, 2019. "Second order tail approximation for the maxima of randomly weighted sums with applications to ruin theory and numerical examples," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 37-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    2. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    3. Chen, Yiqing, 2017. "Interplay of subexponential and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 78-83.
    4. Yiqing Chen & Jiajun Liu & Yang Yang, 2023. "Ruin under Light-Tailed or Moderately Heavy-Tailed Insurance Risks Interplayed with Financial Risks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    5. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
    6. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    7. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    8. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    9. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    10. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    11. Jaakko Lehtomaa, 2015. "Asymptotic Behaviour of Ruin Probabilities in a General Discrete Risk Model Using Moment Indices," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1380-1405, December.
    12. Chen Yu & Zhang Weiping & Liu Jie, 2010. "Asymptotic Tail Probability of Randomly Weighted Sum of Dependent Heavy-Tailed Random Variables," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(2), pages 1-11, July.
    13. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    14. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    15. Yang, Yang & Jiang, Tao & Wang, Kaiyong & Yuen, Kam C., 2020. "Interplay of financial and insurance risks in dependent discrete-time risk models," Statistics & Probability Letters, Elsevier, vol. 162(C).
    16. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    17. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
    18. Zhang, Yi & Shen, Xinmei & Weng, Chengguo, 2009. "Approximation of the tail probability of randomly weighted sums and applications," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 655-675, February.
    19. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    20. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:4:d:10.1007_s10959-021-01143-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.