IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i10p1206-1214.html
   My bibliography  Save this article

Precise large deviation results for the total claim amount under subexponential claim sizes

Author

Listed:
  • Baltrunas, Aleksandras
  • Leipus, Remigijus
  • Siaulys, Jonas

Abstract

The paper deals with the renewal risk model. A precise large deviation result in the case of subexponential claim sizes is proved. As a special case, the example of Pareto distributed claim sizes and inter-occurrence times is investigated.

Suggested Citation

  • Baltrunas, Aleksandras & Leipus, Remigijus & Siaulys, Jonas, 2008. "Precise large deviation results for the total claim amount under subexponential claim sizes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1206-1214, August.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:10:p:1206-1214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00394-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baltrunas, A. & Daley, D. J. & Klüppelberg, C., 2004. "Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 237-258, June.
    2. Tang, Qihe & Su, Chun & Jiang, Tao & Zhang, Jinsong, 2001. "Large deviations for heavy-tailed random sums in compound renewal model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 91-100, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
    2. Lu, Dawei, 2011. "Lower and upper bounds of large deviation for sums of subexponential claims in a multi-risk model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1911-1919.
    3. Yiqing Chen & Kam C. Yuen & Kai W. Ng, 2011. "Precise Large Deviations of Random Sums in Presence of Negative Dependence and Consistent Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 821-833, December.
    4. Lu, Dawei & Zhang, Bin, 2016. "Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 20-29.
    5. Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
    6. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
    7. Remigijus Leipus & Jonas Šiaulys, 2009. "Asymptotic behaviour of the finite‐time ruin probability in renewal risk models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 309-321, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
    2. Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
    3. Yang Yang & Xinzhi Wang & Shaoying Chen, 2022. "Second Order Asymptotics for Infinite-Time Ruin Probability in a Compound Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1221-1236, June.
    4. Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.
    5. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    6. Chen, Yu & Zhang, Weiping, 2007. "Large deviations for random sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 530-538, March.
    7. Yoni Nazarathy & Zbigniew Palmowski, 2022. "On busy periods of the critical GI/G/1 queue and BRAVO," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 219-225, October.
    8. Lu, Dawei, 2012. "Lower bounds of large deviation for sums of long-tailed claims in a multi-risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1242-1250.
    9. Lu, Dawei, 2011. "Lower and upper bounds of large deviation for sums of subexponential claims in a multi-risk model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1911-1919.
    10. Chen, Zhangting & Cheng, Dongya, 2024. "Precise large deviations for non-centralized sums of partial sums and random sums of heavy-tailed END random variables," Statistics & Probability Letters, Elsevier, vol. 211(C).
    11. He, Wei & Cheng, Dongya & Wang, Yuebao, 2013. "Asymptotic lower bounds of precise large deviations with nonnegative and dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 331-338.
    12. Dimitrios G. Konstantinides, 2018. "Precise Large Deviations for Subexponential Distributions in a Multi Risk Model," Risks, MDPI, vol. 6(2), pages 1-13, March.
    13. Daley, D.J. & Goldie, Charles M., 2006. "The moment index of minima (II)," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 831-837, April.
    14. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    15. Zhengyan Lin & Xinmei Shen, 2013. "Approximation of the Tail Probability of Dependent Random Sums Under Consistent Variation and Applications," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 165-186, March.
    16. Jiang, Tao & Cui, Sheng & Ming, Ruixing, 2015. "Large deviations for the stochastic present value of aggregate claims in the renewal risk model," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 83-91.
    17. Jaakko Lehtomaa, 2015. "Asymptotic Behaviour of Ruin Probabilities in a General Discrete Risk Model Using Moment Indices," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1380-1405, December.
    18. Alsmeyer, Gerold & Dyszewski, Piotr, 2017. "Thin tails of fixed points of the nonhomogeneous smoothing transform," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 3014-3041.
    19. Royi Jacobovic & Nikki Levering & Onno Boxma, 2023. "Externalities in the M/G/1 queue: LCFS-PR versus FCFS," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 239-267, August.
    20. Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:10:p:1206-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.