IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2020-15.html
   My bibliography  Save this paper

Consistency of full-sample bootstrap for estimating high-quantile, tail probability, and tail index

Author

Listed:
  • Svetlana Litvinova
  • Mervyn J. Silvapulle

Abstract

We show that the full-sample bootstrap is asymptotically valid for constructing confidence intervals for high-quantiles, tail probabilities, and other tail parameters of a univariate distribution. This resolves the doubts that have been raised about the validity of such bootstrap methods. In our extensive simulation study, the overall performance of the bootstrap method was better than that of the standard asymptotic method, indicating that the bootstrap method is at least as good, if not better than, the asymptotic method for inference. This paper also lays the foundation for developing bootstrap methods for inference about tail events in multivariate statistics; this is particularly important because some of the non-bootstrap methods are complex.

Suggested Citation

  • Svetlana Litvinova & Mervyn J. Silvapulle, 2020. "Consistency of full-sample bootstrap for estimating high-quantile, tail probability, and tail index," Monash Econometrics and Business Statistics Working Papers 15/20, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2020-15
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp15-2020.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    3. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    4. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    5. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    6. de Haan, Laurens & Canto e Castro, Luisa, 2006. "A class of distribution functions with less bias in extreme value estimation," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1617-1624, September.
    7. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    8. Einmahl, J.H.J. & Lin, T., 2003. "Asymptotic Normality of Extreme Value Estimators on C[0,1]," Discussion Paper 2003-132, Tilburg University, Center for Economic Research.
    9. Peng, Zuoxiang & Liao, Xin, 2015. "Second-order asymptotics for convolution of distributions with light tails," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 199-208.
    10. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    11. Haoyu Chen & Tiantian Mao & Fan Yang, 2024. "Estimation of the Adjusted Standard-deviatile for Extreme Risks," Papers 2411.07203, arXiv.org.
    12. Drees, Holger & de Haan, Laurens & Li, Deyuan, 2003. "On large deviation for extremes," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 51-62, August.
    13. Neves, Cláudia & Pereira, António, 2010. "Detecting finiteness in the right endpoint of light-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 437-444, March.
    14. Frederico Caeiro & M. Gomes, 2009. "Semi-parametric second-order reduced-bias high quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 392-413, August.
    15. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    16. Jürg Hüsler & Deyuan Li, 2008. "Weak Convergence of the Empirical Mean Excess Process with Application to Estimate the Negative Tail Index," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 577-593, December.
    17. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    18. Frederico Caeiro & M. Ivette Gomes & Björn Vandewalle, 2014. "Semi-Parametric Probability-Weighted Moments Estimation Revisited," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 1-29, March.
    19. Geluk, J.L. & de Haan, L.F.M., 2002. "On bootstrap sample size in extreme value theory," Econometric Institute Research Papers EI 2002-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Haeusler, E. & Segers, J., 2005. "Assessing Confidence Intervals for the Tail Index by Edgeworth Expansions for the Hill Estimator," Other publications TiSEM e635c476-8fa8-4f16-8760-2, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    full-sample bootstrap; intermediate order statistic; extreme value index; Hill estimator; tail probability; tail quantile;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2020-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.