IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v106y2015icp199-208.html
   My bibliography  Save this article

Second-order asymptotics for convolution of distributions with light tails

Author

Listed:
  • Peng, Zuoxiang
  • Liao, Xin

Abstract

In this paper, asymptotic behaviors of convolutions of distributions belonging to two classes of distributions with light tails are considered. The precise second-order tail asymptotics of the convolutions are derived under the condition of second-order regular variation.

Suggested Citation

  • Peng, Zuoxiang & Liao, Xin, 2015. "Second-order asymptotics for convolution of distributions with light tails," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 199-208.
  • Handle: RePEc:eee:stapro:v:106:y:2015:i:c:p:199-208
    DOI: 10.1016/j.spl.2015.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215002680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    2. Lin, Jianxi, 2012. "Second order asymptotics for ruin probabilities in a renewal risk model with heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 422-429.
    3. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," LIDAM Reprints ISBA 2010011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    5. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 541-546, June.
    6. Geluk, J. & de Haan, L. & Resnick, S. & Starica, C., 1997. "Second-order regular variation, convolution and the central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 69(2), pages 139-159, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    2. Pan, Xiaoqing & Leng, Xuan & Hu, Taizhong, 2013. "The second-order version of Karamata’s theorem with applications," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1397-1403.
    3. Bikramjit Das & Marie Kratz, 2017. "Diversification benefits under multivariate second order regular variation," Working Papers hal-01520655, HAL.
    4. Das, Bikramjit & Kratz, Marie, 2017. "Diversification benefits under multivariate second order regular variation," ESSEC Working Papers WP1706, ESSEC Research Center, ESSEC Business School.
    5. Lv, Wenhua & Pan, Xiaoqing & Hu, Taizhong, 2013. "Asymptotics of the risk concentration based on the tail distortion risk measure," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2703-2710.
    6. Mao, Tiantian & Lv, Wenhua & Hu, Taizhong, 2012. "Second-order expansions of the risk concentration based on CTE," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 449-456.
    7. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    8. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    9. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    10. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    11. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    12. Takashi Kato, 2017. "Theoretical Sensitivity Analysis For Quantitative Operational Risk Management," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-23, August.
    13. Navya Jayesh Mehta & Fan Yang, 2022. "Portfolio Optimization for Extreme Risks with Maximum Diversification: An Empirical Analysis," Risks, MDPI, vol. 10(5), pages 1-26, May.
    14. Cui, Hengxin & Tan, Ken Seng & Yang, Fan & Zhou, Chen, 2022. "Asymptotic analysis of portfolio diversification," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 302-325.
    15. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    16. Yang Yang & Shuang Liu & Kam Chuen Yuen, 2022. "Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2600-2621, December.
    17. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    18. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    19. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    20. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:106:y:2015:i:c:p:199-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.