IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v86y2017i1d10.1007_s00186-017-0591-3.html
   My bibliography  Save this article

How to solve a design centering problem

Author

Listed:
  • Stuart M. Harwood

    (ExxonMobil Research and Engineering)

  • Paul I. Barton

    (Massachusetts Institute of Technology)

Abstract

This work considers the problem of design centering. Geometrically, this can be thought of as inscribing one shape in another. Theoretical approaches and reformulations from the literature are reviewed; many of these are inspired by the literature on generalized semi-infinite programming, a generalization of design centering. However, the motivation for this work relates more to engineering applications of robust design. Consequently, the focus is on specific forms of design spaces (inscribed shapes) and the case when the constraints of the problem may be implicitly defined, such as by the solution of a system of differential equations. This causes issues for many existing approaches, and so this work proposes two restriction-based approaches for solving robust design problems that are applicable to engineering problems. Another feasible-point method from the literature is investigated as well. The details of the numerical implementations of all these methods are discussed. The discussion of these implementations in the particular setting of robust design in engineering problems is new.

Suggested Citation

  • Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
  • Handle: RePEc:spr:mathme:v:86:y:2017:i:1:d:10.1007_s00186-017-0591-3
    DOI: 10.1007/s00186-017-0591-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-017-0591-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-017-0591-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    2. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    3. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    4. Still, G., 1999. "Generalized semi-infinite programming: Theory and methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 301-313, December.
    5. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
    6. Oliver Stein, 2006. "A semi-infinite approach to design centering," Springer Optimization and Its Applications, in: Stephan Dempe & Vyacheslav Kalashnikov (ed.), Optimization with Multivalued Mappings, pages 209-228, Springer.
    7. J. J. Rückmann & A. Shapiro, 1999. "First-Order Optimality Conditions in Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 677-691, June.
    8. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    9. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    10. O. Stein & A. Winterfeld, 2010. "Feasible Method for Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 419-443, August.
    11. Salazar A., Daniel E. & Rocco S., Claudio M., 2007. "Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 697-706.
    12. Harald Günzel & Hubertus Jongen & Oliver Stein, 2007. "On the closure of the feasible set in generalized semi-infinite programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(3), pages 271-280, September.
    13. M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.
    14. Matthew D. Stuber & Paul I. Barton, 2011. "Robust simulation and design using semi-infinite programs with implicit functions," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 5(3/4), pages 378-397.
    15. Hendrix, Eligius M. T. & Mecking, Carmen J. & Hendriks, Theo H. B., 1996. "Finding robust solutions for product design problems," European Journal of Operational Research, Elsevier, vol. 92(1), pages 28-36, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    2. Alexander Mitsos & Angelos Tsoukalas, 2015. "Global optimization of generalized semi-infinite programs via restriction of the right hand side," Journal of Global Optimization, Springer, vol. 61(1), pages 1-17, January.
    3. Peter Kirst & Oliver Stein, 2019. "Global optimization of generalized semi-infinite programs using disjunctive programming," Journal of Global Optimization, Springer, vol. 73(1), pages 1-25, January.
    4. Volker Maag, 2015. "A collision detection approach for maximizing the material utilization," Computational Optimization and Applications, Springer, vol. 61(3), pages 761-781, July.
    5. M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.
    6. Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
    7. Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
    8. Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.
    9. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    10. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    11. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    12. Stein, Oliver & Still, Georg, 2002. "On generalized semi-infinite optimization and bilevel optimization," European Journal of Operational Research, Elsevier, vol. 142(3), pages 444-462, November.
    13. Farough Motamed Nasab & Zukui Li, 2023. "Multistage Adaptive Robust Binary Optimization: Uncertainty Set Lifting versus Partitioning through Breakpoints Optimization," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    14. Haase, Sabrina & Süss, Philipp & Schwientek, Jan & Teichert, Katrin & Preusser, Tobias, 2012. "Radiofrequency ablation planning: An application of semi-infinite modelling techniques," European Journal of Operational Research, Elsevier, vol. 218(3), pages 856-864.
    15. Hatim Djelassi & Alexander Mitsos, 2017. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs," Journal of Global Optimization, Springer, vol. 68(2), pages 227-253, June.
    16. O. I. Kostyukova & T. V. Tchemisova & S. A. Yermalinskaya, 2010. "Convex Semi-Infinite Programming: Implicit Optimality Criterion Based on the Concept of Immobile Indices," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 325-342, May.
    17. Geletu, Abebe & Hoffmann, Armin, 2004. "A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization," European Journal of Operational Research, Elsevier, vol. 157(1), pages 3-15, August.
    18. Daniel Jungen & Hatim Djelassi & Alexander Mitsos, 2022. "Adaptive discretization-based algorithms for semi-infinite programs with unbounded variables," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 83-112, August.
    19. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    20. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:86:y:2017:i:1:d:10.1007_s00186-017-0591-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.