IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v93y2021i1d10.1007_s00186-020-00724-8.html
   My bibliography  Save this article

A transformation-based discretization method for solving general semi-infinite optimization problems

Author

Listed:
  • Jan Schwientek

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

  • Tobias Seidel

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

  • Karl-Heinz Küfer

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

Abstract

Discretization methods are commonly used for solving standard semi-infinite optimization (SIP) problems. The transfer of these methods to the case of general semi-infinite optimization (GSIP) problems is difficult due to the $$\mathbf {x}$$ x -dependence of the infinite index set. On the other hand, under suitable conditions, a GSIP problem can be transformed into a SIP problem. In this paper we assume that such a transformation exists globally. However, this approach may destroy convexity in the lower level, which is very important for numerical methods. We present in this paper a solution approach for GSIP problems, which cleverly combines the above mentioned two techniques. It is shown that the convergence results for discretization methods in the case of SIP problems can be transferred to our transformation-based discretization method under suitable assumptions on the transformation. Finally, we illustrate the operation of our approach as well as its performance on several examples, including a problem of volume-maximal inscription of multiple variable bodies into a larger fixed body, which has never before been considered as a GSIP test problem.

Suggested Citation

  • Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
  • Handle: RePEc:spr:mathme:v:93:y:2021:i:1:d:10.1007_s00186-020-00724-8
    DOI: 10.1007/s00186-020-00724-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-020-00724-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-020-00724-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Still, G., 1999. "Generalized semi-infinite programming: Theory and methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 301-313, December.
    2. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    3. Peter Kirst & Oliver Stein, 2019. "Global optimization of generalized semi-infinite programs using disjunctive programming," Journal of Global Optimization, Springer, vol. 73(1), pages 1-25, January.
    4. Alexander Mitsos & Angelos Tsoukalas, 2015. "Global optimization of generalized semi-infinite programs via restriction of the right hand side," Journal of Global Optimization, Springer, vol. 61(1), pages 1-17, January.
    5. Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
    6. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
    7. Oliver Stein, 2006. "A semi-infinite approach to design centering," Springer Optimization and Its Applications, in: Stephan Dempe & Vyacheslav Kalashnikov (ed.), Optimization with Multivalued Mappings, pages 209-228, Springer.
    8. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Jungen & Hatim Djelassi & Alexander Mitsos, 2022. "Adaptive discretization-based algorithms for semi-infinite programs with unbounded variables," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 83-112, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Jungen & Hatim Djelassi & Alexander Mitsos, 2022. "Adaptive discretization-based algorithms for semi-infinite programs with unbounded variables," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 83-112, August.
    2. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    3. Volker Maag, 2015. "A collision detection approach for maximizing the material utilization," Computational Optimization and Applications, Springer, vol. 61(3), pages 761-781, July.
    4. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    5. Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
    6. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    7. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    8. Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
    9. Peter Kirst & Oliver Stein, 2019. "Global optimization of generalized semi-infinite programs using disjunctive programming," Journal of Global Optimization, Springer, vol. 73(1), pages 1-25, January.
    10. Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
    11. Hatim Djelassi & Alexander Mitsos, 2021. "Global Solution of Semi-infinite Programs with Existence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 863-881, March.
    12. Haase, Sabrina & Süss, Philipp & Schwientek, Jan & Teichert, Katrin & Preusser, Tobias, 2012. "Radiofrequency ablation planning: An application of semi-infinite modelling techniques," European Journal of Operational Research, Elsevier, vol. 218(3), pages 856-864.
    13. Hatim Djelassi & Alexander Mitsos, 2017. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs," Journal of Global Optimization, Springer, vol. 68(2), pages 227-253, June.
    14. Helene Krieg & Tobias Seidel & Jan Schwientek & Karl-Heinz Küfer, 2022. "Solving continuous set covering problems by means of semi-infinite optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 39-82, August.
    15. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    16. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    17. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    18. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
    19. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    20. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," Econometric Institute Research Papers ERS-2003-085-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:93:y:2021:i:1:d:10.1007_s00186-020-00724-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.