IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i2p253-261.html
   My bibliography  Save this article

Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems

Author

Listed:
  • Kanzi, N.
  • Nobakhtian, S.

Abstract

This paper is devoted to the study of nonsmooth generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be locally Lipschitz. We introduce a constraint qualification which is based on the Mordukhovich subdifferential. Then, we derive a Fritz-John type necessary optimality condition. Finally, interrelations between the new and the existing constraint qualifications such as the Mangasarian-Fromovitz, linear independent, and the Slater are investigated.

Suggested Citation

  • Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:253-261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00005-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Still, G., 1999. "Generalized semi-infinite programming: Theory and methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 301-313, December.
    2. Boris S. Mordukhovich & Nguyen Mau Nam, 2005. "Variational Stability and Marginal Functions via Generalized Differentiation," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 800-816, November.
    3. Oliver Stein, 2001. "First-Order Optimality Conditions for Degenerate Index Sets in Generalized Semi-Infinite Optimization," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 565-582, August.
    4. G. Stein & G. Still, 2000. "On Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 443-458, February.
    5. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    6. Gerhard-Wilhelm Weber & Aysun Tezel, 2007. "On generalized semi-infinite optimization of genetic networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 65-77, July.
    7. J. J. Rückmann & A. Shapiro, 1999. "First-Order Optimality Conditions in Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 677-691, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    2. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    3. Thai Doan Chuong & Do Sang Kim, 2014. "Nonsmooth Semi-infinite Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 748-762, March.
    4. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    2. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    3. Stein, Oliver & Still, Georg, 2002. "On generalized semi-infinite optimization and bilevel optimization," European Journal of Operational Research, Elsevier, vol. 142(3), pages 444-462, November.
    4. O. I. Kostyukova & T. V. Tchemisova & S. A. Yermalinskaya, 2010. "Convex Semi-Infinite Programming: Implicit Optimality Criterion Based on the Concept of Immobile Indices," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 325-342, May.
    5. O. Stein, 2004. "On Constraint Qualifications in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 647-671, June.
    6. O. Kostyukova & T. Tchemisova, 2012. "Implicit optimality criterion for convex SIP problem with box constrained index set," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 475-502, July.
    7. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    8. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    9. Oliver Stein, 2001. "First-Order Optimality Conditions for Degenerate Index Sets in Generalized Semi-Infinite Optimization," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 565-582, August.
    10. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    11. M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.
    12. Nader Kanzi, 2013. "Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems," Journal of Global Optimization, Springer, vol. 56(2), pages 417-430, June.
    13. Geletu, Abebe & Hoffmann, Armin, 2004. "A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization," European Journal of Operational Research, Elsevier, vol. 157(1), pages 3-15, August.
    14. Alexander Mitsos & Angelos Tsoukalas, 2015. "Global optimization of generalized semi-infinite programs via restriction of the right hand side," Journal of Global Optimization, Springer, vol. 61(1), pages 1-17, January.
    15. Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.
    16. Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
    17. Le Quang Thuy & Nguyen Thi Toan, 2016. "Subgradients of the Value Function in a Parametric Convex Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 43-64, July.
    18. Volker Maag, 2015. "A collision detection approach for maximizing the material utilization," Computational Optimization and Applications, Springer, vol. 61(3), pages 761-781, July.
    19. Boris S. Mordukhovich & Nguyen Mau Nam & Hung M. Phan, 2012. "Variational Analysis of Marginal Functions with Applications to Bilevel Programming," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 557-586, March.
    20. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," ERIM Report Series Research in Management ERS-2003-085-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:253-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.