On the closure of the feasible set in generalized semi-infinite programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10100-007-0030-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oliver Stein, 2006. "A semi-infinite approach to design centering," Springer Optimization and Its Applications, in: Stephan Dempe & Vyacheslav Kalashnikov (ed.), Optimization with Multivalued Mappings, pages 209-228, Springer.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexander Mitsos & Angelos Tsoukalas, 2015. "Global optimization of generalized semi-infinite programs via restriction of the right hand side," Journal of Global Optimization, Springer, vol. 61(1), pages 1-17, January.
- Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
- M. Beatrice Lignola & Jacqueline Morgan, 2017.
"Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems,"
Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 183-202, April.
- M. Beatrice Lignola & Jacqueline Morgan, 2016. "Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems," CSEF Working Papers 435, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Peter Kirst & Oliver Stein, 2019. "Global optimization of generalized semi-infinite programs using disjunctive programming," Journal of Global Optimization, Springer, vol. 73(1), pages 1-25, January.
- M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.
- Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
- Volker Maag, 2015. "A collision detection approach for maximizing the material utilization," Computational Optimization and Applications, Springer, vol. 61(3), pages 761-781, July.
- Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
- Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
- Haase, Sabrina & Süss, Philipp & Schwientek, Jan & Teichert, Katrin & Preusser, Tobias, 2012. "Radiofrequency ablation planning: An application of semi-infinite modelling techniques," European Journal of Operational Research, Elsevier, vol. 218(3), pages 856-864.
- O. Stein & A. Winterfeld, 2010. "Feasible Method for Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 419-443, August.
- Hatim Djelassi & Alexander Mitsos, 2017. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs," Journal of Global Optimization, Springer, vol. 68(2), pages 227-253, June.
- Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
More about this item
Keywords
Semi-infinite programming; Feasible set; Projection; Genericity; 90C34; 90C46; 90C31; 90C47;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:15:y:2007:i:3:p:271-280. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.