IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-34221-4_10.html
   My bibliography  Save this book chapter

A semi-infinite approach to design centering

In: Optimization with Multivalued Mappings

Author

Listed:
  • Oliver Stein

    (RWTH Aachen University)

Abstract

Summary We consider design centering problems in their reformulation as general semi-infinite optimization problems. The main goal of the article is to show that the Reduction Ansatz of semi-infinite programming generically holds at each solution of the reformulated design centering problem. This is of fundamental importance for theory and numerical methods which base on the intrinsic bilevel structure of the problem. For the genericity considerations we prove a new first order necessary optimality condition in design centering. Since in the course of our analysis also a certain standard semi-infinite programming problem turns out to be related to design centering, the connections to this problem are studied, too.

Suggested Citation

  • Oliver Stein, 2006. "A semi-infinite approach to design centering," Springer Optimization and Its Applications, in: Stephan Dempe & Vyacheslav Kalashnikov (ed.), Optimization with Multivalued Mappings, pages 209-228, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-34221-4_10
    DOI: 10.1007/0-387-34221-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    2. Haase, Sabrina & Süss, Philipp & Schwientek, Jan & Teichert, Katrin & Preusser, Tobias, 2012. "Radiofrequency ablation planning: An application of semi-infinite modelling techniques," European Journal of Operational Research, Elsevier, vol. 218(3), pages 856-864.
    3. Harald Günzel & Hubertus Jongen & Oliver Stein, 2007. "On the closure of the feasible set in generalized semi-infinite programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(3), pages 271-280, September.
    4. Volker Maag, 2015. "A collision detection approach for maximizing the material utilization," Computational Optimization and Applications, Springer, vol. 61(3), pages 761-781, July.
    5. Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
    6. Hatim Djelassi & Alexander Mitsos, 2017. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs," Journal of Global Optimization, Springer, vol. 68(2), pages 227-253, June.
    7. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    8. O. Stein & A. Winterfeld, 2010. "Feasible Method for Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 419-443, August.
    9. Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-34221-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.