IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i4d10.1007_s10898-017-0598-6.html
   My bibliography  Save this article

On tightness and anchoring of McCormick and other relaxations

Author

Listed:
  • Jaromił Najman

    (RWTH Aachen University, AVT - Aachener Verfahrenstechnik, Process Systems Engineering)

  • Alexander Mitsos

    (RWTH Aachen University, AVT - Aachener Verfahrenstechnik, Process Systems Engineering)

Abstract

We say that a convex relaxation of a function is anchored at a particular point in their domains if the values of the function and the relaxation at this point are equal. The opposite of anchoring is offset, i.e., a positive difference between the function and its convex relaxation values over the entire domain. We present theoretical results supported by theoretical and numerical examples showing that anchoring (at corner points) is a useful property but neither necessary nor sufficient for favorable Hausdorff and pointwise convergence order of a relaxation-based bounding scheme. Next, we investigate the tightness and convergence behavior of McCormick relaxations in specific cases. McCormick relaxations have favorable convergence orders, but a positive offset may still slow down the convergence within a simple branch-and-bound algorithm. We demonstrate that use of tighter underlying interval extensions can help reduce the offset and accelerate convergence.

Suggested Citation

  • Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:4:d:10.1007_s10898-017-0598-6
    DOI: 10.1007/s10898-017-0598-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0598-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0598-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agustín Bompadre & Alexander Mitsos & Benoît Chachuat, 2013. "Convergence analysis of Taylor models and McCormick-Taylor models," Journal of Global Optimization, Springer, vol. 57(1), pages 75-114, September.
    2. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    3. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    4. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    5. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    6. Agustín Bompadre & Alexander Mitsos, 2012. "Convergence rate of McCormick relaxations," Journal of Global Optimization, Springer, vol. 52(1), pages 1-28, January.
    7. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    8. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    9. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    2. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    3. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    4. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    5. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    6. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    7. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    8. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    9. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    10. Jai Rajyaguru & Mario E. Villanueva & Boris Houska & Benoît Chachuat, 2017. "Chebyshev model arithmetic for factorable functions," Journal of Global Optimization, Springer, vol. 68(2), pages 413-438, June.
    11. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    12. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    13. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    14. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    15. Mario Villanueva & Boris Houska & Benoît Chachuat, 2015. "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," Journal of Global Optimization, Springer, vol. 62(3), pages 575-613, July.
    16. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    17. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    18. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    19. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    20. Achim Wechsung & Joseph Scott & Harry Watson & Paul Barton, 2015. "Reverse propagation of McCormick relaxations," Journal of Global Optimization, Springer, vol. 63(1), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:4:d:10.1007_s10898-017-0598-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.