Strongly Proper Efficient Solutions: Efficient Solutions with Bounded Trade-Offs
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-015-0841-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
- I. Kaliszewski & W. Michalowski, 1997. "Efficient Solutions and Bounds on Tradeoffs," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 381-394, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shokouh Shahbeyk & Majid Soleimani-damaneh & Refail Kasimbeyli, 2018. "Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure," Journal of Global Optimization, Springer, vol. 71(2), pages 383-405, June.
- Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
- Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
- Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
- de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.
- Shao, Lizhen & Ehrgott, Matthias, 2016. "Discrete representation of non-dominated sets in multi-objective linear programming," European Journal of Operational Research, Elsevier, vol. 255(3), pages 687-698.
- Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
- Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
- Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
- Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
- Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
- Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011.
"Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets,"
INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
- Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Discussion Paper 2009-52, Tilburg University, Center for Economic Research.
- Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
- Kaliszewski, Ignacy, 2003. "Dynamic parametric bounds on efficient outcomes in interactive multiple criteria decision making problems," European Journal of Operational Research, Elsevier, vol. 147(1), pages 94-107, May.
- Hunt, Brian J. & Wiecek, Margaret M. & Hughes, Colleen S., 2010. "Relative importance of criteria in multiobjective programming: A cone-based approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 936-945, December.
- Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
- Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
- Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
- Matthias Ehrgott & Andreas Löhne & Lizhen Shao, 2012. "A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming," Journal of Global Optimization, Springer, vol. 52(4), pages 757-778, April.
- Piercy, Craig A. & Steuer, Ralph E., 2019. "Reducing wall-clock time for the computation of all efficient extreme points in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 277(2), pages 653-666.
- Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
- Kuan-Min Lin & Matthias Ehrgott & Andrea Raith, 2017. "Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes," 4OR, Springer, vol. 15(4), pages 331-357, December.
More about this item
Keywords
Multiple-objective optimization; Proper efficiency; Strong proper efficiency; Trade-off;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0841-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.