IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i7d10.1007_s11027-022-10021-w.html
   My bibliography  Save this article

Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China

Author

Listed:
  • Xu Wang

    (Beijing University of Technology)

  • Pallav Purohit

    (International Institute for Applied Systems Analysis (IIASA))

Abstract

The electricity demand for space cooling in the non-residential building (NRB) sector of China is growing significantly and is becoming increasingly critical with rapid economic development and mounting impacts of climate change. The growing demand for space cooling will increase global warming due to emissions of hydrofluorocarbons used in cooling equipment and carbon dioxide emissions from the mostly fossil fuel-based electricity currently powering space cooling. This study uses the Greenhouse Gas and Air Pollution Interaction and Synergies (GAINS) model framework to estimate current and future emissions of hydrofluorocarbons and their abatement potentials for space cooling in the NRB sector of China and assess the co-benefits in the form of savings in electricity and associated reductions in greenhouse gas (GHG), air pollution, and short-lived climate pollutant emissions. Co-benefits of space cooling are assessed by taking into account (a) regional and urban/rural heterogeneities and climatic zones among different provinces; (b) technical/economic energy efficiency improvements of the cooling technologies; and (c) transition towards lower global warming potential (GWP) refrigerants under the Kigali Amendment. Under the business-as-usual (BAU) scenario, the total energy consumption for space cooling in the NRB sector will increase from 166 TWh in 2015 to 564 TWh in 2050, primarily due to the rapid increase in the floor space area of non-residential buildings. The total GHG mitigation potential due to the transition towards low-GWP refrigerants and technical energy efficiency improvement of cooling technologies will approximately be equal to 10% of the total carbon emissions from the building sector of China in 2050.

Suggested Citation

  • Xu Wang & Pallav Purohit, 2022. "Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-28, October.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10021-w
    DOI: 10.1007/s11027-022-10021-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10021-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10021-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft," Energy Policy, Elsevier, vol. 39(2), pages 1007-1015, February.
    2. Mohit Sharma & Vaibhav Chaturvedi & Pallav Purohit, 2017. "Long-term carbon dioxide and hydrofluorocarbon emissions from commercial space cooling and refrigeration in India: a detailed analysis within an integrated assessment modelling framework," Climatic Change, Springer, vol. 143(3), pages 503-517, August.
    3. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    4. Remco Erp & Reza Soleimanzadeh & Luca Nela & Georgios Kampitsis & Elison Matioli, 2020. "Co-designing electronics with microfluidics for more sustainable cooling," Nature, Nature, vol. 585(7824), pages 211-216, September.
    5. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    6. Höglund-Isaksson, Lena & Purohit, Pallav & Amann, Markus & Bertok, Imrich & Rafaj, Peter & Schöpp, Wolfgang & Borken-Kleefeld, Jens, 2017. "Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons," Environmental Science & Policy, Elsevier, vol. 75(C), pages 138-147.
    7. Pallav Purohit & Nathan Borgford-Parnell & Zbigniew Klimont & Lena Höglund-Isaksson, 2022. "Achieving Paris climate goals calls for increasing ambition of the Kigali Amendment," Nature Climate Change, Nature, vol. 12(4), pages 339-342, April.
    8. Lin, Jiang & Kahrl, Fredrich & Liu, Xu, 2018. "A regional analysis of excess capacity in China’s power systems," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt44j2w0d0, Department of Agricultural & Resource Economics, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pallav Purohit & Tilden Chao & Rick Cooke & Hilde Dhont & Richie Kaur & Roberto Peixoto & Helen Walter-Terrinoni & Ashley Woodcock, 2024. "The Importance of Lifecycle Refrigerant Management in Climate and Ozone Protection," Sustainability, MDPI, vol. 17(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Tong & Yang, Xuan & Li, Ji, 2025. "To boost waste heat harvesting and power generation through a portable heat pipe battery during high efficient electronics cooling," Applied Energy, Elsevier, vol. 377(PA).
    2. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    3. Dongqing Han & Dayong Zhang & Peng Yue & Zhengxu Cao, 2024. "Toward Sustainable Development: Can Digital Transformation of Industrial Enterprise Drive Carbon Reduction?," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    4. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    5. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    6. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    7. Khosravi, Fatemeh & Lowes, Richard & Ugalde-Loo, Carlos E., 2023. "Cooling is hotting up in the UK," Energy Policy, Elsevier, vol. 174(C).
    8. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    9. Markard, Jochen & Erlinghagen, Sabine, 2017. "Technology users and standardization: Game changing strategies in the field of smart meter technology," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 226-235.
    10. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    11. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    12. Feifei Yu & Jiayi Mao & Qing Jiang, 2025. "Accumulate thickly to grow thinly: the U-shaped relationship between digital transformation and corporate carbon performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2135-2160, January.
    13. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    14. Lin, Jiang & Xu Liu, & Gang He,, 2020. "Regional electricity demand and economic transition in China," Utilities Policy, Elsevier, vol. 64(C).
    15. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    16. Erik Champion & Hafizur Rahaman, 2019. "3D Digital Heritage Models as Sustainable Scholarly Resources," Sustainability, MDPI, vol. 11(8), pages 1-8, April.
    17. Li, Song & Zhang, Han & Li, Shuo & Wang, Jiaqi & Wang, Qiuwang & Cheng, Zhilong, 2024. "Advances in hierarchically porous materials: Fundamentals, preparation and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Yuanfan Zheng & Liang Chen & Haipeng Zhao, 2024. "Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    19. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
    20. Rains, Emily & Abraham, Ronald J., 2018. "Rethinking barriers to electrification: Does government collection failure stunt public service provision?," Energy Policy, Elsevier, vol. 114(C), pages 288-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10021-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.