IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i7d10.1007_s11027-022-10021-w.html
   My bibliography  Save this article

Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China

Author

Listed:
  • Xu Wang

    (Beijing University of Technology)

  • Pallav Purohit

    (International Institute for Applied Systems Analysis (IIASA))

Abstract

The electricity demand for space cooling in the non-residential building (NRB) sector of China is growing significantly and is becoming increasingly critical with rapid economic development and mounting impacts of climate change. The growing demand for space cooling will increase global warming due to emissions of hydrofluorocarbons used in cooling equipment and carbon dioxide emissions from the mostly fossil fuel-based electricity currently powering space cooling. This study uses the Greenhouse Gas and Air Pollution Interaction and Synergies (GAINS) model framework to estimate current and future emissions of hydrofluorocarbons and their abatement potentials for space cooling in the NRB sector of China and assess the co-benefits in the form of savings in electricity and associated reductions in greenhouse gas (GHG), air pollution, and short-lived climate pollutant emissions. Co-benefits of space cooling are assessed by taking into account (a) regional and urban/rural heterogeneities and climatic zones among different provinces; (b) technical/economic energy efficiency improvements of the cooling technologies; and (c) transition towards lower global warming potential (GWP) refrigerants under the Kigali Amendment. Under the business-as-usual (BAU) scenario, the total energy consumption for space cooling in the NRB sector will increase from 166 TWh in 2015 to 564 TWh in 2050, primarily due to the rapid increase in the floor space area of non-residential buildings. The total GHG mitigation potential due to the transition towards low-GWP refrigerants and technical energy efficiency improvement of cooling technologies will approximately be equal to 10% of the total carbon emissions from the building sector of China in 2050.

Suggested Citation

  • Xu Wang & Pallav Purohit, 2022. "Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-28, October.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10021-w
    DOI: 10.1007/s11027-022-10021-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10021-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10021-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft," Energy Policy, Elsevier, vol. 39(2), pages 1007-1015, February.
    2. Mohit Sharma & Vaibhav Chaturvedi & Pallav Purohit, 2017. "Long-term carbon dioxide and hydrofluorocarbon emissions from commercial space cooling and refrigeration in India: a detailed analysis within an integrated assessment modelling framework," Climatic Change, Springer, vol. 143(3), pages 503-517, August.
    3. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    4. Remco Erp & Reza Soleimanzadeh & Luca Nela & Georgios Kampitsis & Elison Matioli, 2020. "Co-designing electronics with microfluidics for more sustainable cooling," Nature, Nature, vol. 585(7824), pages 211-216, September.
    5. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    6. Höglund-Isaksson, Lena & Purohit, Pallav & Amann, Markus & Bertok, Imrich & Rafaj, Peter & Schöpp, Wolfgang & Borken-Kleefeld, Jens, 2017. "Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons," Environmental Science & Policy, Elsevier, vol. 75(C), pages 138-147.
    7. Pallav Purohit & Nathan Borgford-Parnell & Zbigniew Klimont & Lena Höglund-Isaksson, 2022. "Achieving Paris climate goals calls for increasing ambition of the Kigali Amendment," Nature Climate Change, Nature, vol. 12(4), pages 339-342, April.
    8. Lin, Jiang & Kahrl, Fredrich & Liu, Xu, 2018. "A regional analysis of excess capacity in China’s power systems," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt44j2w0d0, Department of Agricultural & Resource Economics, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    3. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    4. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    5. Yuanfan Zheng & Liang Chen & Haipeng Zhao, 2024. "Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    6. Rains, Emily & Abraham, Ronald J., 2018. "Rethinking barriers to electrification: Does government collection failure stunt public service provision?," Energy Policy, Elsevier, vol. 114(C), pages 288-300.
    7. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    8. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    9. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    10. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    11. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    12. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
    13. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    14. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    16. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    17. Jose Loyola-Fuentes & Luca Pietrasanta & Marco Marengo & Francesco Coletti, 2022. "Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes," Energies, MDPI, vol. 15(6), pages 1-20, March.
    18. Jamil, Faisal, 2013. "On the electricity shortage, price and electricity theft nexus," Energy Policy, Elsevier, vol. 54(C), pages 267-272.
    19. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    20. Souhankar, Amirhossein & Mortezaee, Ahmad & Hafezi, Reza, 2023. "Potentials for energy-saving and efficiency capacities in Iran: An interpretive structural model to prioritize future national policies," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10021-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.