IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt44j2w0d0.html
   My bibliography  Save this paper

A regional analysis of excess capacity in China’s power systems

Author

Listed:
  • Lin, Jiang
  • Kahrl, Fredrich
  • Liu, Xu

Abstract

China's economy has entered a “new normal,” characterized by slower economic growth and widespread overcapacity in its industrial sectors. Nevertheless, construction of power plants, especially coal-fired plants, continues at a rapid pace. Our analysis examines the extent of overcapacity in China's regional electricity grids. We show that already in 2014, the average reserve margin across China's regional grids was roughly 28%, almost twice as high as a standard planning reserve margin in the U.S. In addition, we find large variations in reserve margins across regional power grids in China, with the highest reserve margin (64%) in the Northeastern grid. This paper examines future reserve margins across regions in China under three growth scenarios. The results suggest that the majority of China will not need new baseload coal power (at least for reliability purposes) before 2020, and potentially not until 2025, under the low- and mid-growth scenarios. Under the high-growth scenario, China's central and eastern regions will need to import more power or built new capacity by 2020. As China's energy sector enters this new normal, our results highlight the growing importance of establishing mechanisms — planning processes and markets — that coordinate generation and transmission investments across grid regions, and that align the country's energy sector investments with its longer-term air quality and climate goals.

Suggested Citation

  • Lin, Jiang & Kahrl, Fredrich & Liu, Xu, 2018. "A regional analysis of excess capacity in China’s power systems," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt44j2w0d0, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt44j2w0d0
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/44j2w0d0.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming, Zeng & Ping, Zhang & Shunkun, Yu & Hui, Liu, 2017. "Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 768-774.
    2. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Zihao & Ran, Lun & Zhang, Yanzi & Ren, Yaping, 2021. "Robust vehicle-to-grid power dispatching operations amid sociotechnical complexities," Applied Energy, Elsevier, vol. 281(C).
    2. Yuan, Jiahai & Guo, Xiaoxuan & Zhang, Weirong & Chen, Sisi & Ai, Yu & Zhao, Changhong, 2019. "Deregulation of power generation planning and elimination of coal power subsidy in China," Utilities Policy, Elsevier, vol. 57(C), pages 1-15.
    3. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    4. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    5. Delu Wang & Xun Xue & Yadong Wang, 2021. "Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    6. Liu, HuiHui & Zhang, ZhongXiang & Chen, Zhan-Ming & Dou, DeSheng, 2019. "The impact of China's electricity price deregulation on coal and power industries: Two-stage game modeling," Energy Policy, Elsevier, vol. 134(C).
    7. Xu Wang & Pallav Purohit, 2022. "Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-28, October.
    8. Li, Gao & Ruonan, Li & Yingdan, Mei & Xiaoli, Zhao, 2022. "Improve technical efficiency of China's coal-fired power enterprises: Taking a coal-fired-withdrawl context," Energy, Elsevier, vol. 252(C).
    9. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    10. Li, Ke & Yuan, Weihong, 2021. "The nexus between industrial growth and electricity consumption in China – New evidence from a quantile-on-quantile approach," Energy, Elsevier, vol. 231(C).
    11. Penghao, Chu & Pingkuo, Liu & Hua, Pan, 2019. "Prospects of hydropower industry in the Yangtze River Basin: China's green energy choice," Renewable Energy, Elsevier, vol. 131(C), pages 1168-1185.
    12. Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
    13. Fangtian Sun & Yonghua Xie & Svend Svendsen & Lin Fu, 2020. "New Low-Temperature Central Heating System Integrated with Industrial Exhausted Heat Using Distributed Electric Compression Heat Pumps for Higher Energy Efficiency," Energies, MDPI, vol. 13(24), pages 1-17, December.
    14. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    15. Lin, Jiang & Xu Liu, & Gang He,, 2020. "Regional electricity demand and economic transition in China," Utilities Policy, Elsevier, vol. 64(C).
    16. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    2. Zheng, Xuemei & Wang, Lu & Hou, Jiajun & Nepal, Rabindra, 2024. "Capacity utilization rate and company performance before the COVID-19 economic crisis: Evidence from listed companies in China’s electricity industry," Energy Economics, Elsevier, vol. 131(C).
    3. Rios-Festner, Daniel & Blanco, Gerardo & Olsina, Fernando, 2020. "Long-term assessment of power capacity incentives by modeling generation investment dynamics under irreversibility and uncertainty," Energy Policy, Elsevier, vol. 137(C).
    4. Rios, Daniel & Blanco, Gerardo & Olsina, Fernando, 2019. "Integrating Real Options Analysis with long-term electricity market models," Energy Economics, Elsevier, vol. 80(C), pages 188-205.
    5. Wang, Yongpei & Yan, Qing & Luo, Yifei & Zhang, Qian, 2023. "Carbon abatement of electricity sector with renewable energy deployment: Evidence from China," Renewable Energy, Elsevier, vol. 210(C), pages 1-11.
    6. Kërçi, Taulant & Tzounas, Georgios & Milano, Federico, 2022. "A dynamic behavioral model of the long-term development of solar photovoltaic generation driven by feed-in tariffs," Energy, Elsevier, vol. 256(C).
    7. Marques, António Cardoso & Fuinhas, José Alberto & Macedo, Daniela Pereira, 2019. "The impact of feed-in and capacity policies on electricity generation from renewable energy sources in Spain," Utilities Policy, Elsevier, vol. 56(C), pages 159-168.
    8. Farizal Farizal & Muhammad Aqil Noviandri & Hanif Hamdani, 2024. "Sustainability Development through a Nearly Zero Energy Building Implementation Case: An Office Building in South Jakarta," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    9. Yılmaz Balaman, Şebnem & Scott, James & Matopoulos, Aristides & Wright, Daniel G., 2019. "Incentivising bioenergy production: Economic and environmental insights from a regional optimization methodology," Renewable Energy, Elsevier, vol. 130(C), pages 867-880.
    10. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    11. Penghao, Chu & Pingkuo, Liu & Hua, Pan, 2019. "Prospects of hydropower industry in the Yangtze River Basin: China's green energy choice," Renewable Energy, Elsevier, vol. 131(C), pages 1168-1185.
    12. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2021. "Coordination of risk-based generation investments in conventional and renewable capacities in oligopolistic electricity markets: A robust regulatory tool," Energy, Elsevier, vol. 214(C).
    13. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt44j2w0d0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.