IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8150-d1480567.html
   My bibliography  Save this article

Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach

Author

Listed:
  • Yuanfan Zheng

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China)

  • Liang Chen

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China)

  • Haipeng Zhao

    (Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA)

Abstract

Climate change can significantly affect building energy use and associated greenhouse gas (GHG) emissions in urban areas, as fossil fuels remain a significant energy source. Green roofs can offer multiple benefits to the urban environment, but their effects on GHG mitigation have not been fully investigated, especially under climate change. This study assessed green roofs’ contribution to GHG mitigation by saving building energy and absorbing CO 2 under the present (2017–2019) and future (2049–2051) climate scenarios (SSP2-45 and SSP5-85) in Shanghai, China, at the city and township scale. A Geographic Information System (GIS)-based spatial statistical method was developed based on climate change modeling and building energy simulation. The results suggested that installing green roofs can effectively save building energy regardless of building type, yet the amount of savings can vary depending on the weather conditions within the city. The contribution analysis indicated that most saved building energy was attributed to the Heating, Ventilation, and Cooling (HVAC) system, with more energy saved under warmer climate scenarios in the future, particularly during the summer months. More energy was saved from shopping malls on an annual and monthly scale, regardless of the climate scenarios and weather zones. Finally, a case study indicated installing green roofs on all five types of buildings (office, hotel, hospital, shopping mall, apartment) of less than 50 m in height can reduce 8.28% of the CO 2 emitted during the building operation stage in the entire city under the present climate scenario. The annual CO 2 reduction varied with the location of townships, ranging from 2.18% to 13.78%, depending on the composition of building types and local weather conditions in Shanghai. This study offered policymakers a reference on the environmental benefits and investment values of installing green roofs in large cities.

Suggested Citation

  • Yuanfan Zheng & Liang Chen & Haipeng Zhao, 2024. "Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8150-:d:1480567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Meng & Yu, Hang & Liu, Yupeng & Lin, Jianyi & Zhong, Xianzhun & Tang, Yin & Guo, Haijin & Jing, Rui, 2024. "Unlock city-scale energy saving and peak load shaving potential of green roofs by GIS-informed urban building energy modelling," Applied Energy, Elsevier, vol. 366(C).
    2. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    3. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    3. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    4. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    5. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    6. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    8. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    9. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    10. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    11. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Deb, C. & Gelder, L.V. & Spiekman, M. & Pandraud, Guillaume & Jack, R. & Fitton, R., 2021. "Measuring the heat transfer coefficient (HTC) in buildings: A stakeholder's survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    14. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
    15. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    16. Fan Yang & Qian Mao, 2023. "Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    17. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    18. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    19. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    20. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8150-:d:1480567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.