IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v20y2015i6p1011-1026.html
   My bibliography  Save this article

Flood risk management for an uncertain future: economic efficiency and system robustness perspectives compared for the Meuse River (Netherlands)

Author

Listed:
  • Frans Klijn
  • Marjolein Mens
  • Nathalie Asselman

Abstract

Flood risk management planning involves making decisions on which measures to implement and when to do so. This is particularly difficult in view of global changes, which are inherently uncertain. Rational decision making on which comprehensive strategy to implement, or on which measures to take first, requires ex-ante assessments that question whether flood risk is effectively reduced and against which societal costs. Such decision making is usually supported by cost benefit analysis or cost effectiveness analysis. However, these metrics treat low-probability/large-consequence risk and high-probability/small-consequence risk as equal, which is often considered unsatisfactory. Robustness analysis can account for this flaw, as it gives insight into the relationship between flood magnitude and flood consequences at the scale of an entire flood risk system. A robust system can cope with a variety of extreme floods, including those that exceed the design flood. This paper aims to examine how different key decision criteria may advise diverse decisions. To this end, it examines how a variety of strategic alternatives for flood risk management along the Meuse River in the Netherlands score on two different economic criteria and how they would rank from a robustness perspective. The strategies include making room for the river, strengthening embankments and various combinations of these. The results show that the three criteria indeed lead to a different ranking of which strategy to prefer. This supports our claim that a robustness perspective may help to select a strategy that is not only economically efficient but may also be more sustainable in view of uncertainties into the future. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Frans Klijn & Marjolein Mens & Nathalie Asselman, 2015. "Flood risk management for an uncertain future: economic efficiency and system robustness perspectives compared for the Meuse River (Netherlands)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 1011-1026, August.
  • Handle: RePEc:spr:masfgc:v:20:y:2015:i:6:p:1011-1026
    DOI: 10.1007/s11027-015-9643-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-015-9643-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-015-9643-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carel Eijgenraam, 2006. "Optimal safety standards for dike-ring areas," CPB Discussion Paper 62, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Frans Klijn & Heidi Kreibich & Hans Moel & Edmund Penning-Rowsell, 2015. "Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 845-864, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frans Klijn & Heidi Kreibich & Hans Moel & Edmund Penning-Rowsell, 2015. "Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 845-864, August.
    2. Junfei Chen & Liming Liu & Jinpeng Pei & Menghua Deng, 2021. "An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: a case study of Nanjing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2671-2692, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    2. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    3. Zwaneveld, P. & Verweij, G. & van Hoesel, S., 2018. "Safe dike heights at minimal costs: An integer programming approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 294-301.
    4. Jonkman, S.N. & Bockarjova, M. & Kok, M. & Bernardini, P., 2008. "Integrated hydrodynamic and economic modelling of flood damage in the Netherlands," Ecological Economics, Elsevier, vol. 66(1), pages 77-90, May.
    5. Arjen Hoekstra & Jean-Luc Kok, 2008. "Adapting to climate change: a comparison of two strategies for dike heightening," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(2), pages 217-228, November.
    6. Angela Connelly & Jeremy Carter & John Handley & Stephen Hincks, 2018. "Enhancing the Practical Utility of Risk Assessments in Climate Change Adaptation," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    7. Bos, Frits & Zwaneveld, Peter, 2017. "Cost-benefit analysis for flood risk management and water governance in the Netherlands; an overview of one century," MPRA Paper 80933, University Library of Munich, Germany.
    8. Myung-Jin Kim & Robert J. Nicholls & John M. Preston & Gustavo A. Almeida, 2022. "Evaluation of flexibility in adaptation projects for climate change," Climatic Change, Springer, vol. 171(1), pages 1-17, March.
    9. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Ruud Brekelmans & Dick den Hertog & Kees Roos & Carel Eijgenraam, 2012. "Safe Dike Heights at Minimal Costs: The Nonhomogeneous Case," Operations Research, INFORMS, vol. 60(6), pages 1342-1355, December.
    11. Pieter Bloemen & Tim Reeder & Chris Zevenbergen & Jeroen Rijke & Ashley Kingsborough, 2018. "Lessons learned from applying adaptation pathways in flood risk management and challenges for the further development of this approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1083-1108, October.
    12. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Discussion Paper 2012-079, Tilburg University, Center for Economic Research.
    13. Jeroen Neuvel & Adri van den Brink, 2009. "Flood risk management in Dutch local spatial planning practices," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 52(7), pages 865-880.
    14. Carel Eijgenraam & Ruud Brekelmans & Dick den Hertog & Kees Roos, 2017. "Optimal Strategies for Flood Prevention," Management Science, INFORMS, vol. 63(5), pages 1644-1656, May.
    15. Beheshtian, Arash & Donaghy, Kieran P. & Richard Geddes, R. & Oliver Gao, H., 2018. "Climate-adaptive planning for the long-term resilience of transportation energy infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 99-122.
    16. Tobias Sieg & Thomas Schinko & Kristin Vogel & Reinhard Mechler & Bruno Merz & Heidi Kreibich, 2019. "Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-21, April.
    17. Dominik Paprotny & Paweł Terefenko, 2017. "New estimates of potential impacts of sea level rise and coastal floods in Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1249-1277, January.
    18. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    19. Jie Song & Xinyu Fu & Ruoniu Wang & Zhong-Ren Peng & Zongni Gu, 2018. "Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 703-733, June.
    20. Grames, Johanna & Prskawetz, Alexia & Grass, Dieter & Viglione, Alberto & Blöschl, Günter, 2016. "Modeling the interaction between flooding events and economic growth," Ecological Economics, Elsevier, vol. 129(C), pages 193-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:20:y:2015:i:6:p:1011-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.