IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v49y2011i3p565-579.html
   My bibliography  Save this article

Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation

Author

Listed:
  • Peters, Gareth W.
  • Shevchenko, Pavel V.
  • Young, Mark
  • Yip, Wendy

Abstract

Under the Basel II standards, the Operational Risk (OpRisk) advanced measurement approach is not prescriptive regarding the class of statistical model utilized to undertake capital estimation. It has however become well accepted to utilize a Loss Distributional Approach (LDA) paradigm to model the individual OpRisk loss processes corresponding to the Basel II Business line/event type. In this paper we derive a novel class of doubly stochastic α-stable family LDA models. These models provide the ability to capture the heavy tailed loss processes typical of OpRisk, whilst also providing analytic expressions for the compound processes annual loss density and distributions, as well as the aggregated compound processes’ annual loss models. In particular we develop models of the annual loss processes in two scenarios. The first scenario considers the loss processes with a stochastic intensity parameter, resulting in inhomogeneous compound Poisson processes annually. The resulting arrival processes of losses under such a model will have independent counts over increments within the year. The second scenario considers discretization of the annual loss processes into monthly increments with dependent time increments as captured by a Binomial processes with a stochastic probability of success changing annually. Each of these models will be coupled under an LDA framework with heavy-tailed severity models comprised of α-stable severities for the loss amounts per loss event. In this paper we will derive analytic results for the annual loss distribution density and distribution under each of these models and study their properties.

Suggested Citation

  • Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
  • Handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:565-579
    DOI: 10.1016/j.insmatheco.2011.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711000886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gareth W. Peters & Balakrishnan B. Kannan & Ben Lasscock & Chris Mellen & Simon Godsill, 2010. "Bayesian Cointegrated Vector Autoregression models incorporating Alpha-stable noise for inter-day price movements via Approximate Bayesian Computation," Papers 1008.0149, arXiv.org.
    2. Peters, Gareth W. & Shevchenko, Pavel V. & Wüthrich, Mario V., 2009. "Model Uncertainty in Claims Reserving within Tweedie's Compound Poisson Models," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 1-33, May.
    3. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Model uncertainty in claims reserving within Tweedie's compound Poisson models," Papers 0904.1483, arXiv.org.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Peters, Gareth W. & Byrnes, Aaron D. & Shevchenko, Pavel V., 2011. "Impact of insurance for operational risk: Is it worthwhile to insure or be insured for severe losses?," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 287-303, March.
    6. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    7. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    8. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    2. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    3. Kylie-Anne Richards & Gareth W. Peters & William Dunsmuir, 2012. "Heavy-Tailed Features and Empirical Analysis of the Limit Order Book Volume Profiles in Futures Markets," Papers 1210.7215, arXiv.org, revised Apr 2015.
    4. Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
    5. Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
    6. Gareth W. Peters & Wilson Y. Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments," Papers 1603.01041, arXiv.org.
    7. Gareth W. Peters & Rodrigo S. Targino & Pavel V. Shevchenko, 2013. "Understanding Operational Risk Capital Approximations: First and Second Orders," Papers 1303.2910, arXiv.org.
    8. Martin Eling, 2013. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2011 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 16(1), pages 35-46, March.
    9. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gareth W. Peters & Aaron D. Byrnes & Pavel V. Shevchenko, 2010. "Impact of Insurance for Operational Risk: Is it worthwhile to insure or be insured for severe losses?," Papers 1010.4406, arXiv.org, revised Nov 2010.
    2. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    3. Peters, Gareth W. & Byrnes, Aaron D. & Shevchenko, Pavel V., 2011. "Impact of insurance for operational risk: Is it worthwhile to insure or be insured for severe losses?," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 287-303, March.
    4. Gareth W. Peters & Rodrigo S. Targino & Pavel V. Shevchenko, 2013. "Understanding Operational Risk Capital Approximations: First and Second Orders," Papers 1303.2910, arXiv.org.
    5. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    6. Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
    7. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    8. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    9. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    10. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.
    11. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    12. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    13. Lally, Nathan & Hartman, Brian, 2018. "Estimating loss reserves using hierarchical Bayesian Gaussian process regression with input warping," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 124-140.
    14. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    15. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.
    16. Peng Shi, 2017. "A Multivariate Analysis of Intercompany Loss Triangles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 717-737, June.
    17. Ji, Jingru & Wang, Donghua & Xu, Dinghai, 2019. "Modelling the spreading process of extreme risks via a simple agent-based model: Evidence from the China stock market," Economic Modelling, Elsevier, vol. 80(C), pages 383-391.
    18. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    19. Pavel V. Shevchenko & Grigory Temnov, 2009. "Modeling operational risk data reported above a time-varying threshold," Papers 0904.4075, arXiv.org, revised Jul 2009.
    20. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:565-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.