IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v28y2022i2d10.1007_s10985-022-09549-5.html
   My bibliography  Save this article

Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models

Author

Listed:
  • Wenjing Yin

    (University of Illinois, Urbana-Champaign)

  • Sihai Dave Zhao

    (University of Illinois, Urbana-Champaign)

  • Feng Liang

    (University of Illinois, Urbana-Champaign)

Abstract

For high dimensional gene expression data, one important goal is to identify a small number of genes that are associated with progression of the disease or survival of the patients. In this paper, we consider the problem of variable selection for multivariate survival data. We propose an estimation procedure for high dimensional accelerated failure time (AFT) models with bivariate censored data. The method extends the Buckley-James method by minimizing a penalized $$L_2$$ L 2 loss function with a penalty function induced from a bivariate spike-and-slab prior specification. In the proposed algorithm, censored observations are imputed using the Kaplan-Meier estimator, which avoids a parametric assumption on the error terms. Our empirical studies demonstrate that the proposed method provides better performance compared to the alternative procedures designed for univariate survival data regardless of whether the true events are correlated or not, and conceptualizes a formal way of handling bivariate survival data for AFT models. Findings from the analysis of a myeloma clinical trial using the proposed method are also presented.

Suggested Citation

  • Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
  • Handle: RePEc:spr:lifeda:v:28:y:2022:i:2:d:10.1007_s10985-022-09549-5
    DOI: 10.1007/s10985-022-09549-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09549-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09549-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    2. Veronika Ročková & Edward I. George, 2014. "EMVS: The EM Approach to Bayesian Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 828-846, June.
    3. Susanne Konrath & Ludwig Fahrmeir & Thomas Kneib, 2015. "Bayesian accelerated failure time models based on penalized mixtures of Gaussians: regularization and variable selection," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 259-280, July.
    4. Guosheng Yin & Jianwen Cai, 2005. "Quantile Regression Models with Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 61(1), pages 151-161, March.
    5. Huang, Longlong & Kopciuk, Karen & Lu, Xuewen, 2020. "Adaptive group bridge selection in the semiparametric accelerated failure time model," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    6. Lee, Kyu Ha & Chakraborty, Sounak & Sun, Jianguo, 2017. "Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 1-13.
    7. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    8. Wenqing He & Jerald F. Lawless, 2005. "Bivariate location–scale models for regression analysis, with applications to lifetime data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 63-78, February.
    9. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    10. Sijian Wang & Bin Nan & Ji Zhu & David G. Beer, 2008. "Doubly Penalized Buckley–James Method for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 64(1), pages 132-140, March.
    11. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    12. repec:bla:biomet:v:71:y:2015:i:4:p:1185-1194 is not listed on IDEAS
    13. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    14. Wei Pan & Thomas A. Louis, 2000. "A Linear Mixed-Effects Model for Multivariate Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 160-166, March.
    15. Z. Jin & D. Y. Lin & Z. Ying, 2006. "Rank Regression Analysis of Multivariate Failure Time Data Based on Marginal Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 1-23, March.
    16. Hui Li & Guosheng Yin, 2009. "Generalized method of moments estimation for linear regression with clustered failure time data," Biometrika, Biometrika Trust, vol. 96(4), pages 1024-1024.
    17. David Hanagal, 2006. "Bivariate Weibull regression model based on censored samples," Statistical Papers, Springer, vol. 47(1), pages 137-147, January.
    18. Jian Huang & Shuangge Ma & Huiliang Xie, 2006. "Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(3), pages 813-820, September.
    19. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
    20. Yijian Huang, 2002. "Censored regression with the multistate accelerated sojourn times model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 17-29, January.
    21. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    22. Hui Li & Guosheng Yin, 2009. "Generalized method of moments estimation for linear regression with clustered failure time data," Biometrika, Biometrika Trust, vol. 96(2), pages 293-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ke & Luo, Shan, 2024. "Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    2. Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    3. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    4. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    5. Xiaochao Xia & Binyan Jiang & Jialiang Li & Wenyang Zhang, 2016. "Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 547-569, October.
    6. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
    7. Yifei Sun & Kwun Chuen Gary Chan & Jing Qin, 2018. "Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time," Biometrics, The International Biometric Society, vol. 74(1), pages 77-85, March.
    8. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    9. Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
    10. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    11. Jeongjin Lee & Taehwa Choi & Sangbum Choi, 2024. "Censored broken adaptive ridge regression in high-dimension," Computational Statistics, Springer, vol. 39(6), pages 3457-3482, September.
    12. Cheng, Chao & Feng, Xingdong & Huang, Jian & Jiao, Yuling & Zhang, Shuang, 2022. "ℓ0-Regularized high-dimensional accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    13. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    14. Liya Fu & Zhuoran Yang & Yan Zhou & You-Gan Wang, 2021. "An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 679-709, October.
    15. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    16. K. Hendrickx & P. Janssen & A. Verhasselt, 2018. "Penalized spline estimation in varying coefficient models with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 871-895, December.
    17. Zhang, Jiajia & Peng, Yingwei, 2009. "Crossing hazard functions in common survival models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2124-2130, October.
    18. Choi, Taehwa & Kim, Arlene K.H. & Choi, Sangbum, 2021. "Semiparametric least-squares regression with doubly-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    19. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    20. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:28:y:2022:i:2:d:10.1007_s10985-022-09549-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.