IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v175y2020ics0047259x19302970.html
   My bibliography  Save this article

Adaptive group bridge selection in the semiparametric accelerated failure time model

Author

Listed:
  • Huang, Longlong
  • Kopciuk, Karen
  • Lu, Xuewen

Abstract

The group bridge penalized method has been studied in the multiple linear regression model and the semiparametric accelerated failure time (AFT) model and demonstrated the capability to remove unimportant groups, however, it cannot effectively remove unimportant variables within the important groups. To overcome this limitation, we propose the adaptive group bridge method in the AFT model. We show that the adaptive group bridge method enjoys the powerful oracle property. Simulation studies indicate that the adaptive group bridge approach for the AFT model can correctly identify both important groups and important within-group individual variables even with high censoring rates in high-dimensional data. The PBC data is analyzed to illustrate the application of the proposed method.

Suggested Citation

  • Huang, Longlong & Kopciuk, Karen & Lu, Xuewen, 2020. "Adaptive group bridge selection in the semiparametric accelerated failure time model," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19302970
    DOI: 10.1016/j.jmva.2019.104562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19302970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. S. Wang & B. Nan & N. Zhu & J. Zhu, 2009. "Hierarchically penalized Cox regression with grouped variables," Biometrika, Biometrika Trust, vol. 96(2), pages 307-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.
    2. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    3. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.
    4. He, Qianchuan & Kong, Linglong & Wang, Yanhua & Wang, Sijian & Chan, Timothy A. & Holland, Eric, 2016. "Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 222-239.
    5. Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.
    6. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    7. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    8. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
    11. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    12. Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
    13. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    14. Yuanjia Wang & Huaihou Chen & Runze Li & Naihua Duan & Roberto Lewis-Fernández, 2011. "Prediction-Based Structured Variable Selection through the Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 67(3), pages 896-905, September.
    15. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    16. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    17. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    18. Iris Chen & Yogeshwar D Kelkar & Yu Gu & Jie Zhou & Xing Qiu & Hulin Wu, 2017. "High-dimensional linear state space models for dynamic microbial interaction networks," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-20, November.
    19. Yunquan Song & Zitong Li & Minglu Fang, 2022. "Robust Variable Selection Based on Penalized Composite Quantile Regression for High-Dimensional Single-Index Models," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    20. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19302970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.