IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i2p397-413.html
   My bibliography  Save this article

Estimating Mean Survival Time: When is it Possible?

Author

Listed:
  • Ying Ding
  • Bin Nan

Abstract

type="main" xml:id="sjos12112-abs-0001"> For right-censored survival data, it is well-known that the mean survival time can be consistently estimated when the support of the censoring time contains the support of the survival time. In practice, however, this condition can be easily violated because the follow-up of a study is usually within a finite window. In this article, we show that the mean survival time is still estimable from a linear model when the support of some covariate(s) with non-zero coefficient(s) is unbounded regardless of the length of follow-up. This implies that the mean survival time can be well estimated when the support of linear predictor is wide in practice. The theoretical finding is further verified for finite samples by simulation studies. Simulations also show that, when both models are correctly specified, the linear model yields reasonable mean square prediction errors and outperforms the Cox model, particularly with heavy censoring and short follow-up time.

Suggested Citation

  • Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:2:p:397-413
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12112
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Tze Leung & Ying, Zhiliang, 1988. "Stochastic integrals of empirical-type processes with applications to censored regression," Journal of Multivariate Analysis, Elsevier, vol. 27(2), pages 334-358, November.
    2. Yufan Zhao & Donglin Zeng & Mark A. Socinski & Michael R. Kosorok, 2011. "Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer," Biometrics, The International Biometric Society, vol. 67(4), pages 1422-1433, December.
    3. Etzioni, Ruth D. & Feuer, Eric J. & Sullivan, Sean D. & Lin, Danyu & Hu, Chengcheng & Ramsey, Scott D., 1999. "On the use of survival analysis techniques to estimate medical care costs," Journal of Health Economics, Elsevier, vol. 18(3), pages 365-380, June.
    4. Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
    5. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    6. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    7. Sijian Wang & Bin Nan & Ji Zhu & David G. Beer, 2008. "Doubly Penalized Buckley–James Method for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 64(1), pages 132-140, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byungtae Seo & Sangwook Kang, 2023. "Accelerated failure time modeling via nonparametric mixtures," Biometrics, The International Biometric Society, vol. 79(1), pages 165-177, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    2. Zhang, Jiajia & Peng, Yingwei, 2009. "Crossing hazard functions in common survival models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2124-2130, October.
    3. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    4. Yu, Lili & Zhao, Yichuan, 2024. "Laplace approximated quasi-likelihood method for heteroscedastic survival data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    5. Lili Yu & Liang Liu & Ding-Geng(Din) Chen, 2013. "Weighted Least-Squares Method for Right-Censored Data in Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 69(2), pages 358-365, June.
    6. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    7. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
    8. Yijian Huang, 2013. "Fast Censored Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 789-806, December.
    9. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    10. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    11. K. Hendrickx & P. Janssen & A. Verhasselt, 2018. "Penalized spline estimation in varying coefficient models with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 871-895, December.
    12. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    13. Choi, Taehwa & Kim, Arlene K.H. & Choi, Sangbum, 2021. "Semiparametric least-squares regression with doubly-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    14. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
    15. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    16. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    17. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.
    18. Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
    19. Seung-Hwan Lee, 2016. "On the estimators and tests for the semiparametric hazards regression model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 531-546, October.
    20. Wanrong Liu & Xuewen Lu, 2009. "Weighted least squares method for censored linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 787-799.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:2:p:397-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.