Estimating the average treatment effect on survival based on observational data and using partly conditional modeling
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Niels Keiding & Marusca Filiberti & Sille Esbjerg & James M. Robins & Niels Jacobsen, 1999. "The Graft Versus Leukemia Effect after Bone Marrow Transplantation: A Case Study Using Structural Nested Failure Time Models," Biometrics, The International Biometric Society, vol. 55(1), pages 23-28, March.
- David M. Vock & Anastasios A. Tsiatis & Marie Davidian & Eric B. Laber & Wayne M. Tsuang & C. Ashley Finlen Copeland & Scott M. Palmer, 2013. "Assessing the Causal Effect of Organ Transplantation on the Distribution of Residual Lifetime," Biometrics, The International Biometric Society, vol. 69(4), pages 820-829, December.
- Layla Parast & Lu Tian & Tianxi Cai, 2014. "Landmark Estimation of Survival and Treatment Effect in a Randomized Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 384-394, March.
- Pei-Yun Chen & Anastasios A. Tsiatis, 2001. "Causal Inference on the Difference of the Restricted Mean Lifetime Between Two Groups," Biometrics, The International Biometric Society, vol. 57(4), pages 1030-1038, December.
- Hans C. Van Houwelingen, 2007. "Dynamic Prediction by Landmarking in Event History Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 70-85, March.
- Min Zhang & Douglas E. Schaubel, 2012. "Double-Robust Semiparametric Estimator for Differences in Restricted Mean Lifetimes in Observational Studies," Biometrics, The International Biometric Society, vol. 68(4), pages 999-1009, December.
- Min Zhang & Douglas E. Schaubel, 2011. "Estimating Differences in Restricted Mean Lifetime Using Observational Data Subject to Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 740-749, September.
- Douglas E. Schaubel & Robert A. Wolfe & Friedrich K. Port, 2006. "A Sequential Stratification Method for Estimating the Effect of a Time-Dependent Experimental Treatment in Observational Studies," Biometrics, The International Biometric Society, vol. 62(3), pages 910-917, September.
- Yingye Zheng & Patrick J. Heagerty, 2005. "Partly Conditional Survival Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 61(2), pages 379-391, June.
- Qi Gong & Douglas E. Schaubel, 2013. "Partly Conditional Estimation of the Effect of a Time-Dependent Factor in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 69(2), pages 338-347, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhiwei Zhang & Wei Li & Hui Zhang, 2020. "Efficient Estimation of Mann–Whitney-Type Effect Measures for Right-Censored Survival Outcomes in Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 246-262, July.
- Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
- Xin Wang & Douglas E. Schaubel, 2018. "Modeling restricted mean survival time under general censoring mechanisms," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 176-199, January.
- Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
- Yu Zheng & Tianxi Cai, 2017. "Augmented estimation for t‐year survival with censored regression models," Biometrics, The International Biometric Society, vol. 73(4), pages 1169-1178, December.
- Qi Gong & Douglas E. Schaubel, 2013. "Partly Conditional Estimation of the Effect of a Time-Dependent Factor in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 69(2), pages 338-347, June.
- Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
- Min Zhang & Douglas E. Schaubel, 2012. "Double-Robust Semiparametric Estimator for Differences in Restricted Mean Lifetimes in Observational Studies," Biometrics, The International Biometric Society, vol. 68(4), pages 999-1009, December.
- Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
- Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
- Jiyang Wen & Chen Hu & Mei‐Cheng Wang, 2023. "Joint inference for competing risks data using multiple endpoints," Biometrics, The International Biometric Society, vol. 79(3), pages 1635-1645, September.
- Yasuhiro Hagiwara & Tomohiro Shinozaki & Yutaka Matsuyama, 2020. "G‐estimation of structural nested restricted mean time lost models to estimate effects of time‐varying treatments on a failure time outcome," Biometrics, The International Biometric Society, vol. 76(3), pages 799-810, September.
- David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.
- Jing Zhang & Jing Ning & Ruosha Li, 2023. "Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 353-371, July.
- Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
- Zahra Mansourvar & Torben Martinussen, 2017. "Estimation of average causal effect using the restricted mean residual lifetime as effect measure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 426-438, July.
- Nicholas Williams & Michael Rosenblum & Iván Díaz, 2022. "Optimising precision and power by machine learning in randomised trials with ordinal and time‐to‐event outcomes with an application to COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2156-2178, October.
- Yifan He & Yong Zhou, 2020. "Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 761-788, October.
- Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
- Ruosha Li & Xuelin Huang & Jorge Cortes, 2016. "Quantile residual life regression with longitudinal biomarker measurements for dynamic prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 755-773, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:134-144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.