IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v24y2021i2d10.1007_s10951-020-00668-1.html
   My bibliography  Save this article

Scheduling coupled tasks with exact delays for minimum total job completion time

Author

Listed:
  • Bo Chen

    (University of Warwick)

  • Xiandong Zhang

    (Fudan University)

Abstract

In this paper, we fill in a conspicuous gap in research on scheduling coupled tasks. We draw a full complexity picture for single-machine scheduling of coupled tasks with exact time delays in between with the objective of minimizing the total of job completion times.

Suggested Citation

  • Bo Chen & Xiandong Zhang, 2021. "Scheduling coupled tasks with exact delays for minimum total job completion time," Journal of Scheduling, Springer, vol. 24(2), pages 209-221, April.
  • Handle: RePEc:spr:jsched:v:24:y:2021:i:2:d:10.1007_s10951-020-00668-1
    DOI: 10.1007/s10951-020-00668-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-020-00668-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-020-00668-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Bessy & R. Giroudeau, 2019. "Parameterized complexity of a coupled-task scheduling problem," Journal of Scheduling, Springer, vol. 22(3), pages 305-313, June.
    2. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    3. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
    4. Roy D. Shapiro, 1980. "Scheduling coupled tasks," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 27(3), pages 489-498, September.
    5. Moustafa Elshafei & Hanif D. Sherali & J. Cole Smith, 2004. "Radar pulse interleaving for multi‐target tracking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 72-94, February.
    6. Dino Ahr & József Békési & Gábor Galambos & Marcus Oswald & Gerhard Reinelt, 2004. "An exact algorithm for scheduling identical coupled tasks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(2), pages 193-203, June.
    7. Orman, A. J. & Potts, C. N. & Shahani, A. K. & Moore, A. R., 1996. "Scheduling for a multifunction phased array radar system," European Journal of Operational Research, Elsevier, vol. 90(1), pages 13-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Fischer & Péter Györgyi, 2023. "Approximation algorithms for coupled task scheduling minimizing the sum of completion times," Annals of Operations Research, Springer, vol. 328(2), pages 1387-1408, September.
    2. Maël Guiraud & Yann Strozecki, 2024. "Scheduling periodic messages on a shared link without buffering," Journal of Scheduling, Springer, vol. 27(5), pages 461-484, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
    2. David Fischer & Péter Györgyi, 2023. "Approximation algorithms for coupled task scheduling minimizing the sum of completion times," Annals of Operations Research, Springer, vol. 328(2), pages 1387-1408, September.
    3. Mostafa Khatami & Amir Salehipour, 2021. "Coupled task scheduling with time-dependent processing times," Journal of Scheduling, Springer, vol. 24(2), pages 223-236, April.
    4. Nazim Sami & Karim Amrouche & Mourad Boudhar, 2024. "New efficient algorithms for the two-machine no-wait chain-reentrant shop problem," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-29, July.
    5. Békési, József & Dósa, György & Galambos, Gábor, 2022. "A first Fit type algorithm for the coupled task scheduling problem with unit execution time and two exact delays," European Journal of Operational Research, Elsevier, vol. 297(3), pages 844-852.
    6. József Békési & Gábor Galambos & Michael Jung & Marcus Oswald & Gerhard Reinelt, 2014. "A branch-and-bound algorithm for the coupled task problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 47-81, August.
    7. Mostafa Khatami & Amir Salehipour, 2021. "A binary search algorithm for the general coupled task scheduling problem," 4OR, Springer, vol. 19(4), pages 593-611, December.
    8. Nadjat Meziani & Ammar Oulamara & Mourad Boudhar, 2019. "Two-machine flowshop scheduling problem with coupled-operations," Annals of Operations Research, Springer, vol. 275(2), pages 511-530, April.
    9. Maël Guiraud & Yann Strozecki, 2024. "Scheduling periodic messages on a shared link without buffering," Journal of Scheduling, Springer, vol. 27(5), pages 461-484, October.
    10. Jianfu Chen & Kai Li & Chengbin Chu & Abderrahim Sahli, 2024. "A simplified swarm optimization algorithm to minimize makespan on non-identical parallel machines with unequal job release times under non-renewable resource constraints," Operational Research, Springer, vol. 24(2), pages 1-27, June.
    11. Josef Zuk & David Kirszenblat, 2024. "Explicit results for the distributions of queue lengths for a non-preemptive two-level priority queue," Annals of Operations Research, Springer, vol. 341(2), pages 1223-1246, October.
    12. Xiue Gao & Wenxue Xie & Zumin Wang & Tianshu Zhang & Bo Chen & Ping Wang, 2020. "Predicting human body composition using a modified adaptive genetic algorithm with a novel selection operator," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    13. Karim Amrouche & Mourad Boudhar & Mohamed Bendraouche & Farouk Yalaoui, 2017. "Chain-reentrant shop with an exact time lag: new results," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 285-295, January.
    14. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    15. Jing Liu & Qiqi Zhi & Haipeng Ji & Bolong Li & Siyuan Lei, 2021. "Wheel hub customization with an interactive artificial immune algorithm," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1305-1322, June.
    16. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    17. Haowei Zhang & Junwei Xie & Qiyong Hu & Zhaojian Zhang & Binfeng Zong, 2019. "Online pulse interleaving task scheduling for multifunction radar," Journal of Scheduling, Springer, vol. 22(2), pages 183-192, April.
    18. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    19. Alexander Ageev, 2020. "Approximating the 2-machine flow shop problem with exact delays taking two values," Journal of Global Optimization, Springer, vol. 76(3), pages 491-497, March.
    20. S. Bessy & R. Giroudeau, 2019. "Parameterized complexity of a coupled-task scheduling problem," Journal of Scheduling, Springer, vol. 22(3), pages 305-313, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:24:y:2021:i:2:d:10.1007_s10951-020-00668-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.