IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v22y2019i2d10.1007_s10951-018-0580-2.html
   My bibliography  Save this article

Online pulse interleaving task scheduling for multifunction radar

Author

Listed:
  • Haowei Zhang

    (Air Force Engineering University)

  • Junwei Xie

    (Air Force Engineering University)

  • Qiyong Hu

    (Air Force Engineering University
    Unit 94873, PLA)

  • Zhaojian Zhang

    (Air Force Engineering University
    Air Force Early Warning Academy)

  • Binfeng Zong

    (Unit 94710)

Abstract

An efficient scheduling algorithm is the key to handling various tasks simultaneously for the multifunction radar. A radar task comprises the transmitting, waiting and receiving durations. The waiting duration can be utilized to transmit or receive signals. This scheduling technique is called pulse interleaving. In this article, a novel online pulse interleaving scheduling algorithm is proposed. The algorithm divides the pulse interleaving analysis into the time resource and the energy resource analyses and adaptively interleaves different types of tasks. Thereby the pulse interleaving can be simplified, the waiting durations can be fully utilized, and different workload situations can be well matched. Simulation results show that the proposed algorithm achieves higher successful scheduling, time utilization and high-value ratios compared with the three existing algorithms while maintaining an efficient runtime.

Suggested Citation

  • Haowei Zhang & Junwei Xie & Qiyong Hu & Zhaojian Zhang & Binfeng Zong, 2019. "Online pulse interleaving task scheduling for multifunction radar," Journal of Scheduling, Springer, vol. 22(2), pages 183-192, April.
  • Handle: RePEc:spr:jsched:v:22:y:2019:i:2:d:10.1007_s10951-018-0580-2
    DOI: 10.1007/s10951-018-0580-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-018-0580-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-018-0580-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H.S. Mir & Fouad Ben Abdelaziz, 2012. "Cyclic task scheduling for multifunction radar," Post-Print hal-00778683, HAL.
    2. Orman, A. J. & Potts, C. N. & Shahani, A. K. & Moore, A. R., 1996. "Scheduling for a multifunction phased array radar system," European Journal of Operational Research, Elsevier, vol. 90(1), pages 13-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    2. József Békési & Gábor Galambos & Michael Jung & Marcus Oswald & Gerhard Reinelt, 2014. "A branch-and-bound algorithm for the coupled task problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 47-81, August.
    3. Duron, Cyril & Proth, Jean-Marie & Wardi, Yorai, 2005. "Insertion of a random task in a schedule: a real-time approach," European Journal of Operational Research, Elsevier, vol. 164(1), pages 52-63, July.
    4. Bo Chen & Xiandong Zhang, 2021. "Scheduling coupled tasks with exact delays for minimum total job completion time," Journal of Scheduling, Springer, vol. 24(2), pages 209-221, April.
    5. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
    6. Békési, József & Dósa, György & Galambos, Gábor, 2022. "A first Fit type algorithm for the coupled task scheduling problem with unit execution time and two exact delays," European Journal of Operational Research, Elsevier, vol. 297(3), pages 844-852.
    7. C N Potts & J D Whitehead, 2007. "Heuristics for a coupled-operation scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1375-1388, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:22:y:2019:i:2:d:10.1007_s10951-018-0580-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.