IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i2d10.1007_s10479-024-06237-5.html
   My bibliography  Save this article

Explicit results for the distributions of queue lengths for a non-preemptive two-level priority queue

Author

Listed:
  • Josef Zuk

    (Defence Science and Technology Group)

  • David Kirszenblat

    (Defence Science and Technology Group)

Abstract

Explicit results are derived using simple and exact methods for the joint and marginal queue-length distributions for the M/M/c queue with two non-preemptive priority levels. Equal service rates are assumed. Two approaches are considered. One is based on numerically robust quadratic recurrence relations. The other is based on a complex contour-integral representation that yields exact closed-form analytical expressions, not hitherto available in the literature, that can also be evaluated numerically with very high accuracy.

Suggested Citation

  • Josef Zuk & David Kirszenblat, 2024. "Explicit results for the distributions of queue lengths for a non-preemptive two-level priority queue," Annals of Operations Research, Springer, vol. 341(2), pages 1223-1246, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06237-5
    DOI: 10.1007/s10479-024-06237-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06237-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06237-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Edward P. C. & Wilson, Sandra D., 1999. "Analysis of nonpreemptive priority queues with multiple servers and two priority classes," European Journal of Operational Research, Elsevier, vol. 118(1), pages 181-193, October.
    2. Alan Cobham, 1955. "Letter to the Editor---Priority Assignment---A Correction," Operations Research, INFORMS, vol. 3(4), pages 547-547, November.
    3. Alan Cobham, 1954. "Priority Assignment in Waiting Line Problems," Operations Research, INFORMS, vol. 2(1), pages 70-76, February.
    4. Dimitris Bertsimas & Daisuke Nakazato, 1995. "The Distributional Little's Law and Its Applications," Operations Research, INFORMS, vol. 43(2), pages 298-310, April.
    5. Julian L. Holley, 1954. "Letter to the Editor---Waiting Line Subject to Priorities," Operations Research, INFORMS, vol. 2(3), pages 341-343, August.
    6. Richard H. Davis, 1966. "Waiting-Time Distribution of a Multi-Server, Priority Queuing System," Operations Research, INFORMS, vol. 14(1), pages 133-136, February.
    7. Gerold Pestalozzi, 1964. "Priority Rules for Runway Use," Operations Research, INFORMS, vol. 12(6), pages 941-950, December.
    8. Douglas R. Miller, 1981. "Computation of Steady-State Probabilities for M / M /1 Priority Queues," Operations Research, INFORMS, vol. 29(5), pages 945-958, October.
    9. Edward P. C. Kao & Kumar S. Narayanan, 1990. "Computing Steady-State Probabilities of a Nonpreemptive Priority Multiserver Queue," INFORMS Journal on Computing, INFORMS, vol. 2(3), pages 211-218, August.
    10. Orman, A. J. & Potts, C. N. & Shahani, A. K. & Moore, A. R., 1996. "Scheduling for a multifunction phased array radar system," European Journal of Operational Research, Elsevier, vol. 90(1), pages 13-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mor Harchol-Balter & Takayuki Osogami & Alan Scheller-Wolf & Adam Wierman, 2005. "Multi-Server Queueing Systems with Multiple Priority Classes," Queueing Systems: Theory and Applications, Springer, vol. 51(3), pages 331-360, December.
    2. Jianfu Wang & Opher Baron & Alan Scheller-Wolf, 2015. "M/M/c Queue with Two Priority Classes," Operations Research, INFORMS, vol. 63(3), pages 733-749, June.
    3. Jori Selen & Brian Fralix, 2017. "Time-dependent analysis of an M / M / c preemptive priority system with two priority classes," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 379-415, December.
    4. Attahiru Sule Alfa, 1998. "Matrix‐geometric solution of discrete time MAP/PH/1 priority queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(1), pages 23-50, February.
    5. Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2014. "Complexity-Augmented Triage: A Tool for Improving Patient Safety and Operational Efficiency," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 329-345, July.
    6. Andrei Sleptchenko & M. Eric Johnson, 2015. "Maintaining Secure and Reliable Distributed Control Systems," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 103-117, February.
    7. Lars A. Vianen & Adriana F. Gabor & Jan-Kees Ommeren, 2016. "Waiting times in classical priority queues via elementary lattice path counting," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 295-307, December.
    8. Hideaki Takagi, 2016. "Waiting time in the M/M/ $$ m $$ m LCFS nonpreemptive priority queue with impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 257-289, December.
    9. Elvin Coban & Aliza Heching & Alan Scheller‐Wolf, 2019. "Service Center Staffing with Cross‐Trained Agents and Heterogeneous Customers," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 788-809, April.
    10. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    11. Winfried K. Grassmann & Steve Drekic, 2008. "Multiple Eigenvalues in Spectral Analysis for Solving QBD Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 73-83, March.
    12. József Békési & Gábor Galambos & Michael Jung & Marcus Oswald & Gerhard Reinelt, 2014. "A branch-and-bound algorithm for the coupled task problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 47-81, August.
    13. Jayaswal, Sachin & Vidyarthi, Navneet, 2013. "Capacitated Multiple Allocation Hub Location with Service Level Constraints for Multiple Consignment Classes," IIMA Working Papers WP2013-11-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Jayaswal, Sachin & Jewkes, Elizabeth & Ray, Saibal, 2011. "Product differentiation and operations strategy in a capacitated environment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 716-728, May.
    15. William P. Barnett & Daniel A. Levinthal, 2017. "Special Issue Introduction: Evolutionary Logics of Strategy and Organization," Strategy Science, INFORMS, vol. 2(1), pages 1-1, March.
    16. Gérard Hébuterne & Catherine Rosenberg, 1999. "Arrival and departure state distributions in the general bulk‐service queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 107-118, February.
    17. Bertsimas, Dimitris., 1995. "Transient laws of non-stationary queueing systems and their applications," Working papers 3836-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    18. Kao, Edward P. C. & Wilson, Sandra D., 1999. "Analysis of nonpreemptive priority queues with multiple servers and two priority classes," European Journal of Operational Research, Elsevier, vol. 118(1), pages 181-193, October.
    19. Philip A. Ernst & Søren Asmussen & John J. Hasenbein, 2018. "Stability and busy periods in a multiclass queue with state-dependent arrival rates," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 207-224, December.
    20. Amir Rastpour & Armann Ingolfsson & Burhaneddin Sandıkçı, 2022. "Algorithms for Queueing Systems with Reneging and Priorities Modeled as Quasi-Birth-Death Processes," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1693-1710, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06237-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.