IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i1p72-94.html
   My bibliography  Save this article

Radar pulse interleaving for multi‐target tracking

Author

Listed:
  • Moustafa Elshafei
  • Hanif D. Sherali
  • J. Cole Smith

Abstract

In a multifunction radar, the maximum number of targets that can be managed or tracked is an important performance measure. Interleaving algorithms developed to operate radars exploit the dead‐times between the transmitted and the received pulses to allocate new tracking tasks that might involve transmitting or receiving pulses, thus increasing the capacity of the system. The problem of interleaving N targets involves a search among N! possibilities, and suboptimal solutions are usually employed to satisfy the real‐time constraints of the radar system. In this paper, we present new tight 0–1 integer programming models for the radar pulse interleaving problem and develop effective solution methods based on Lagrangian relaxation techniques. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.

Suggested Citation

  • Moustafa Elshafei & Hanif D. Sherali & J. Cole Smith, 2004. "Radar pulse interleaving for multi‐target tracking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 72-94, February.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:1:p:72-94
    DOI: 10.1002/nav.10103
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10103
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanif D. Sherali & Warren P. Adams & Patrick J. Driscoll, 1998. "Exploiting Special Structures in Constructing a Hierarchy of Relaxations for 0-1 Mixed Integer Problems," Operations Research, INFORMS, vol. 46(3), pages 396-405, June.
    2. Hanif D. Sherali & Youngho Lee & Donald D. Boyer, 1995. "Scheduling target illuminators in naval battle‐group anti‐air warfare," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(5), pages 737-755, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
    2. David Fischer & Péter Györgyi, 2023. "Approximation algorithms for coupled task scheduling minimizing the sum of completion times," Annals of Operations Research, Springer, vol. 328(2), pages 1387-1408, September.
    3. Alexander Ageev, 2020. "Approximating the 2-machine flow shop problem with exact delays taking two values," Journal of Global Optimization, Springer, vol. 76(3), pages 491-497, March.
    4. Bo Chen & Xiandong Zhang, 2021. "Scheduling coupled tasks with exact delays for minimum total job completion time," Journal of Scheduling, Springer, vol. 24(2), pages 209-221, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Agha Iqbal & O'Connor, Debra J., 2010. "The impact of distribution system characteristics on computational tractability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 323-333, January.
    2. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    3. Chang, Ching-Ter, 2000. "An efficient linearization approach for mixed-integer problems," European Journal of Operational Research, Elsevier, vol. 123(3), pages 652-659, June.
    4. Hanif D. Sherali & Barbara M. P. Fraticelli & Russell D. Meller, 2003. "Enhanced Model Formulations for Optimal Facility Layout," Operations Research, INFORMS, vol. 51(4), pages 629-644, August.
    5. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    6. Pratik Worah, 2015. "Rank bounds for a hierarchy of Lovász and Schrijver," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 689-709, October.
    7. Siqian Shen & J. Cole Smith & Shabbir Ahmed, 2010. "Expectation and Chance-Constrained Models and Algorithms for Insuring Critical Paths," Management Science, INFORMS, vol. 56(10), pages 1794-1814, October.
    8. Sherali, Hanif D. & Lee, Youngho & Park, Taehyung, 2000. "New modeling approaches for the design of local access transport area networks," European Journal of Operational Research, Elsevier, vol. 127(1), pages 94-108, November.
    9. Mohammed Alfaki & Dag Haugland, 2013. "A multi-commodity flow formulation for the generalized pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 917-937, July.
    10. Monique Laurent, 2003. "A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0--1 Programming," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 470-496, August.
    11. Hanif D. Sherali & Taehyung Park, 2000. "Discrete equal‐capacity p‐median problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 166-183, March.
    12. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    13. Hanif D. Sherali & Patrick J. Driscoll, 2002. "On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems," Operations Research, INFORMS, vol. 50(4), pages 656-669, August.
    14. Hanif D. Sherali & Arief B. Suharko, 1998. "A Tactical Decision Support System for Empty Railcar Management," Transportation Science, INFORMS, vol. 32(4), pages 306-329, November.
    15. Scott Kolodziej & Pedro Castro & Ignacio Grossmann, 2013. "Global optimization of bilinear programs with a multiparametric disaggregation technique," Journal of Global Optimization, Springer, vol. 57(4), pages 1039-1063, December.
    16. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    17. Hanif D. Sherali & J. Cole Smith & Antonio A. Trani, 2002. "An Airspace Planning Model for Selecting Flight-plans Under Workload, Safety, and Equity Considerations," Transportation Science, INFORMS, vol. 36(4), pages 378-397, November.
    18. Brian Lunday & Hanif Sherali & Kevin Lunday, 2012. "The coastal seaspace patrol sector design and allocation problem," Computational Management Science, Springer, vol. 9(4), pages 483-514, November.
    19. Fred Glover & Hanif Sherali, 2005. "Some Classes of Valid Inequalities and Convex Hull Characterizations for Dynamic Fixed-Charge Problems under Nested Constraints," Annals of Operations Research, Springer, vol. 140(1), pages 215-233, November.
    20. Hanif Sherali, 2007. "RLT: A unified approach for discrete and continuous nonconvex optimization," Annals of Operations Research, Springer, vol. 149(1), pages 185-193, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:1:p:72-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.