IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i2d10.1007_s12351-024-00829-6.html
   My bibliography  Save this article

A simplified swarm optimization algorithm to minimize makespan on non-identical parallel machines with unequal job release times under non-renewable resource constraints

Author

Listed:
  • Jianfu Chen

    (Hefei University of Technology
    Université Gustave-Eiffel)

  • Kai Li

    (Hefei University of Technology
    Ministry of Education)

  • Chengbin Chu

    (Université Gustave-Eiffel)

  • Abderrahim Sahli

    (Université Gustave-Eiffel)

Abstract

This article studies a uniform parallel machine scheduling problem with unequal job release times. It is assumed that each machine consumes a certain non-renewable resource when manufacturing jobs. The objective is to find an optimal schedule to minimize the makespan, given that the total resource consumption does not exceed the given limit. A mathematical model is first built to derive optimal solutions for small-scale instances. For large-scale instances, a simplified swarm optimization (SSO) algorithm is proposed. Considering that the parameters of meta-heuristic algorithms have great impacts on the output solution, the Taguchi method is then applied to tune the algorithm parameters. Afterward, a large number of simulation experiments are conducted. Finally, Friedman’s test and Wilcoxon signed-rank test are employed to analyze the simulation results from statistical perspectives. Experimental results reveal that the proposed algorithm can provide competitive solutions.

Suggested Citation

  • Jianfu Chen & Kai Li & Chengbin Chu & Abderrahim Sahli, 2024. "A simplified swarm optimization algorithm to minimize makespan on non-identical parallel machines with unequal job release times under non-renewable resource constraints," Operational Research, Springer, vol. 24(2), pages 1-27, June.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:2:d:10.1007_s12351-024-00829-6
    DOI: 10.1007/s12351-024-00829-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00829-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00829-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lancia, Giuseppe, 2000. "Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 120(2), pages 277-288, January.
    2. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    3. Györgyi, Péter & Kis, Tamás, 2017. "Approximation schemes for parallel machine scheduling with non-renewable resources," European Journal of Operational Research, Elsevier, vol. 258(1), pages 113-123.
    4. Ozdamar, Linet & Ulusoy, Gunduz, 1994. "A local constraint based analysis approach to project scheduling under general resource constraints," European Journal of Operational Research, Elsevier, vol. 79(2), pages 287-298, December.
    5. Shabtay, Dvir & Kaspi, Moshe, 2006. "Parallel machine scheduling with a convex resource consumption function," European Journal of Operational Research, Elsevier, vol. 173(1), pages 92-107, August.
    6. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    7. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    8. Yang-Kuei Lin, 2013. "Particle Swarm Optimization Algorithm for Unrelated Parallel Machine Scheduling with Release Dates," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    2. Mojtaba Afzalirad & Masoud Shafipour, 2018. "Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 423-437, February.
    3. Michael Geurtsen & Jelle Adan & Alp Akçay, 2024. "Integrated maintenance and production scheduling for unrelated parallel machines with setup times," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 1046-1079, September.
    4. Fleszar, Krzysztof & Hindi, Khalil S., 2018. "Algorithms for the unrelated parallel machine scheduling problem with a resource constraint," European Journal of Operational Research, Elsevier, vol. 271(3), pages 839-848.
    5. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    6. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    7. Hesham K. Alfares, 2022. "Plant shutdown maintenance workforce team assignment and job scheduling," Journal of Scheduling, Springer, vol. 25(3), pages 321-338, June.
    8. Sönke Hartmann, 1998. "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 733-750, October.
    9. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    10. Mauricio Diéguez & Jaime Bustos & Carlos Cares, 2020. "Mapping the variations for implementing information security controls to their operational research solutions," Information Systems and e-Business Management, Springer, vol. 18(2), pages 157-186, June.
    11. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    12. Tony T. Tran & Arthur Araujo & J. Christopher Beck, 2016. "Decomposition Methods for the Parallel Machine Scheduling Problem with Setups," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 83-95, February.
    13. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    14. Matthias Bentert & Robert Bredereck & Péter Györgyi & Andrzej Kaczmarczyk & Rolf Niedermeier, 2023. "A multivariate complexity analysis of the material consumption scheduling problem," Journal of Scheduling, Springer, vol. 26(4), pages 369-382, August.
    15. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    16. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    17. Xu, Dehua & Yin, Yunqiang & Li, Hongxing, 2009. "A note on "scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 825-827, September.
    18. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    19. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    20. Alexander Kononov & Yulia Zakharova, 2022. "Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion," Journal of Global Optimization, Springer, vol. 83(3), pages 539-564, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:2:d:10.1007_s12351-024-00829-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.