IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01362-0.html
   My bibliography  Save this article

Generalized Iterated Poisson Process and Applications

Author

Listed:
  • Ritik Soni

    (Central University of Punjab)

  • Ashok Kumar Pathak

    (Central University of Punjab)

Abstract

In this paper, we consider the composition of a homogeneous Poisson process with an independent time-fractional Poisson process. We call this composition the generalized iterated Poisson process (GIPP). The probability law in terms of the fractional Bell polynomials, governing fractional differential equations, and the compound representation of the GIPP are obtained. We give explicit expressions for mean and covariance and study the long-range dependence property of the GIPP. It is also shown that the GIPP is over-dispersed. Some results related to first-passage time distribution and the hitting probability are also examined. We define the compound and the multivariate versions of the GIPP and explore their main characteristics. Further, we consider a surplus model based on the compound version of the iterated Poisson process (IPP) and derive several results related to ruin theory. Its applications using the Poisson–Lindley and the zero-truncated geometric distributions are also provided. Finally, simulated sample paths for the IPP and the GIPP are presented.

Suggested Citation

  • Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Iterated Poisson Process and Applications," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3216-3245, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01362-0
    DOI: 10.1007/s10959-024-01362-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01362-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01362-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    2. Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
    3. Yuying Li & Kristina P. Sendova, 2020. "A surplus process involving a compound Poisson counting process and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(13), pages 3238-3256, July.
    4. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    5. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Fractional Risk Process," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    2. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    3. Maheshwari, Aditya, 2023. "Tempered space fractional negative binomial process," Statistics & Probability Letters, Elsevier, vol. 196(C).
    4. K. K. Kataria & M. Khandakar, 2022. "Generalized Fractional Counting Process," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2784-2805, December.
    5. Bretó, Carles, 2012. "Time changes that result in multiple points in continuous-time Markov counting processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2229-2234.
    6. Francesco Iafrate & Costantino Ricciuti, 2024. "Some Families of Random Fields Related to Multiparameter Lévy Processes," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3055-3088, November.
    7. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    8. Tapiero, Charles S. & Vallois, Pierre, 2016. "Fractional randomness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1161-1177.
    9. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
    10. K. K. Kataria & P. Vellaisamy, 2019. "On Distributions of Certain State-Dependent Fractional Point Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1554-1580, September.
    11. Beghin, Luisa & Macci, Claudio, 2022. "Non-central moderate deviations for compound fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 185(C).
    12. Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Fractional Risk Process," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-17, December.
    13. Roberto Garra & Enzo Orsingher & Federico Polito, 2018. "A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability," Mathematics, MDPI, vol. 6(1), pages 1-10, January.
    14. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    15. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    16. Bretó, Carles, 2012. "On the infinitesimal dispersion of multivariate Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 720-725.
    17. K. K. Kataria & M. Khandakar, 2021. "On the Long-Range Dependence of Mixed Fractional Poisson Process," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1607-1622, September.
    18. Farouk Mselmi, 2022. "Generalized linear model for subordinated Lévy processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 772-801, June.
    19. Kataria, K.K. & Khandakar, M., 2022. "Extended eigenvalue–eigenvector method," Statistics & Probability Letters, Elsevier, vol. 183(C).
    20. Davide Cocco & Massimiliano Giona, 2021. "Generalized Counting Processes in a Stochastic Environment," Mathematics, MDPI, vol. 9(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01362-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.