IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i4p720-725.html
   My bibliography  Save this article

On the infinitesimal dispersion of multivariate Markov counting systems

Author

Listed:
  • Bretó, Carles

Abstract

We provide a multivariate extension of a recent result for univariate Markov counting processes: necessity and sufficiency of compoundness for infinitesimal over-dispersion. As an illustration, we show that infinitesimally over-dispersed epidemiological SIR-type compartment models must rely on compound counting processes.

Suggested Citation

  • Bretó, Carles, 2012. "On the infinitesimal dispersion of multivariate Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 720-725.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:720-725
    DOI: 10.1016/j.spl.2011.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211004111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," DES - Working Papers. Statistics and Econometrics. WS ws111914, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
    3. Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2571-2591, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
    2. Bretó, Carles, 2012. "Time changes that result in multiple points in continuous-time Markov counting processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2229-2234.
    3. King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
    4. Jonathan Fintzi & Jon Wakefield & Vladimir N. Minin, 2022. "A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts," Biometrics, The International Biometric Society, vol. 78(4), pages 1530-1541, December.
    5. King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
    6. Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.
    7. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    8. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:720-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.