IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i12p1899-1910.html
   My bibliography  Save this article

Time-changed Poisson processes

Author

Listed:
  • Kumar, A.
  • Nane, Erkan
  • Vellaisamy, P.

Abstract

We consider time-changed Poisson processes, and derive the governing difference–differential equations (DDEs) for these processes. In particular, we consider the time-changed Poisson processes where the time-change is inverse Gaussian, or its hitting time process, and discuss the governing DDEs. The stable subordinator, inverse stable subordinator and their iterated versions are also considered as time-changes. DDEs corresponding to probability mass functions of these time-changed processes are obtained. Finally, we obtain a new governing partial differential equation for the tempered stable subordinator of index 0<β<1, when β is a rational number. We then use this result to obtain the governing DDE for the mass function of the Poisson process time-changed by the tempered stable subordinator. Our results extend and complement the results in Baeumer et al. (2009) and Beghin and Orsingher (2009) in several directions.

Suggested Citation

  • Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1899-1910
    DOI: 10.1016/j.spl.2011.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    2. Kumar, A. & Meerschaert, Mark M. & Vellaisamy, P., 2011. "Fractional normal inverse Gaussian diffusion," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 146-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    2. Bretó, Carles, 2012. "On the infinitesimal dispersion of multivariate Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 720-725.
    3. Bretó, Carles, 2012. "Time changes that result in multiple points in continuous-time Markov counting processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2229-2234.
    4. Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Iterated Poisson Process and Applications," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3216-3245, November.
    5. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
    6. Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.
    7. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandez-Anaya, G. & Valdes-Parada, F.J. & Alvarez-Ramirez, J., 2011. "On generalized fractional Cattaneo’s equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4198-4202.
    2. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    3. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    4. Kumar, A. & Vellaisamy, P., 2015. "Inverse tempered stable subordinators," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 134-141.
    5. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    6. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    7. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
    8. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    9. Kondratiev, Yuri & da Silva, José L., 2023. "Compound Poisson processes: Potentials, Green measures and random times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    10. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    11. Gupta, Neha & Kumar, Arun, 2022. "Inverse tempered stable subordinators and related processes with Mellin transform," Statistics & Probability Letters, Elsevier, vol. 186(C).
    12. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    13. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    14. Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    16. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    17. A. Kumar & J. Gajda & A. Wyłomańska & R. Połoczański, 2019. "Fractional Brownian Motion Delayed by Tempered and Inverse Tempered Stable Subordinators," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 185-202, March.
    18. Cohen, Serge & Meerschaert, Mark M. & Rosinski, Jan, 2010. "Modeling and simulation with operator scaling," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2390-2411, December.
    19. Giacomo Ascione & Enrica Pirozzi, 2021. "Generalized Fractional Calculus for Gompertz-Type Models," Mathematics, MDPI, vol. 9(17), pages 1-32, September.
    20. Marjorie Hahn & Kei Kobayashi & Sabir Umarov, 2012. "SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations," Journal of Theoretical Probability, Springer, vol. 25(1), pages 262-279, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1899-1910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.