IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i4p1006-1017.html
   My bibliography  Save this article

On the integral of fractional Poisson processes

Author

Listed:
  • Orsingher, Enzo
  • Polito, Federico

Abstract

In this paper, we consider the Riemann–Liouville fractional integral Nα,ν(t)=1Γ(α)∫0t(t−s)α−1Nν(s)ds, where Nν(t), t≥0, is a fractional Poisson process of order ν∈(0,1], and α>0. We give the explicit bivariate distribution Pr{Nν(s)=k,Nν(t)=r}, for t≥s, r≥k, the mean ENα,ν(t) and the variance VarNα,ν(t). We study the process Nα,1(t) for which we are able to produce explicit results for the conditional and absolute variances and means. Much more involved results on N1,1(t) are presented in the last section where also distributional properties of the integrated Poisson process (including the representation as random sums) is derived. The integral of powers of the Poisson process is examined and its connections with generalized harmonic numbers are discussed.

Suggested Citation

  • Orsingher, Enzo & Polito, Federico, 2013. "On the integral of fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1006-1017.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1006-1017
    DOI: 10.1016/j.spl.2012.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212004750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    2. Mauro Politi & Taisei Kaizoji & Enrico Scalas, 2011. "Full characterization of the fractional Poisson process," Papers 1104.4234, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    2. Kreer, Markus & Kızılersü, Ayşe & Thomas, Anthony W., 2014. "Fractional Poisson processes and their representation by infinite systems of ordinary differential equations," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 27-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    2. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    3. Davide Cocco & Massimiliano Giona, 2021. "Generalized Counting Processes in a Stochastic Environment," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    4. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    5. Leonenko, Nikolai & Scalas, Enrico & Trinh, Mailan, 2017. "The fractional non-homogeneous Poisson process," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 147-156.
    6. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    7. Maheshwari, Aditya, 2023. "Tempered space fractional negative binomial process," Statistics & Probability Letters, Elsevier, vol. 196(C).
    8. Kataria, K.K. & Khandakar, M., 2022. "Extended eigenvalue–eigenvector method," Statistics & Probability Letters, Elsevier, vol. 183(C).
    9. L. Beghin & P. Vellaisamy, 2018. "Space-Fractional Versions of the Negative Binomial and Polya-Type Processes," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 463-485, June.
    10. Kataria, K.K. & Vellaisamy, P., 2017. "Saigo space–time fractional Poisson process via Adomian decomposition method," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 69-80.
    11. K. K. Kataria & M. Khandakar, 2022. "Generalized Fractional Counting Process," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2784-2805, December.
    12. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    13. Tapiero, Charles S. & Vallois, Pierre, 2016. "Fractional randomness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1161-1177.
    14. K. K. Kataria & P. Vellaisamy, 2019. "On Distributions of Certain State-Dependent Fractional Point Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1554-1580, September.
    15. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    16. Beghin, Luisa & Macci, Claudio, 2022. "Non-central moderate deviations for compound fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 185(C).
    17. Roberto Garra & Enzo Orsingher & Federico Polito, 2018. "A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability," Mathematics, MDPI, vol. 6(1), pages 1-10, January.
    18. K. K. Kataria & M. Khandakar, 2021. "On the Long-Range Dependence of Mixed Fractional Poisson Process," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1607-1622, September.
    19. Chicheportiche, Rémy & Chakraborti, Anirban, 2017. "A model-free characterization of recurrences in stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 312-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1006-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.