IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v152y2019icp74-81.html
   My bibliography  Save this article

Poisson Lindley process and its main properties

Author

Listed:
  • Cha, Ji Hwan

Abstract

Until now, the nonhomogeneous Poisson process has been intensively applied in various practical applications due to its merits. However, at the same time, it has also critical limitations in applications. To overcome these limitations, a new counting process model (called Poisson Lindley Process) is developed. It will be shown that this new counting process model does not have such limitations. Some basic stochastic properties are derived. In addition, a new concept for positive dependent increments is defined and the dependence structure is analyzed. Some of the properties obtained in this paper will be stated in general forms. One of the important contributions of this paper is to provide a new counting process model which allows explicit expression of the likelihood function.

Suggested Citation

  • Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
  • Handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:74-81
    DOI: 10.1016/j.spl.2019.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219301117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Sheu, Shey-Huei & Chien, Yu-Hung, 2004. "Optimal age-replacement policy of a system subject to shocks with random lead-time," European Journal of Operational Research, Elsevier, vol. 159(1), pages 132-144, November.
    3. Chien, Yu-Hung & Sheu, Shey-Huei, 2006. "Extended optimal age-replacement policy with minimal repair of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 174(1), pages 169-181, October.
    4. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    5. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    6. Pham, Hoang, 2003. "Software reliability and cost models: Perspectives, comparison, and practice," European Journal of Operational Research, Elsevier, vol. 149(3), pages 475-489, September.
    7. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    8. Zarezadeh, S. & Asadi, M. & Balakrishnan, N., 2014. "Dynamic network reliability modeling under nonhomogeneous Poisson processes," European Journal of Operational Research, Elsevier, vol. 232(3), pages 561-571.
    9. Cha, Ji Hwan, 2011. "Comparison of combined stochastic risk processes and its applications," European Journal of Operational Research, Elsevier, vol. 215(2), pages 404-410, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Iterated Poisson Process and Applications," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3216-3245, November.
    2. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 13-34, June.
    2. Shikhar Tyagi & Arvind Pandey & Christophe Chesneau, 2022. "Weighted Lindley Shared Regression Model for Bivariate Left Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 655-682, November.
    3. Mahendra Saha & Harsh Tripathi & Sanku Dey & Sudhansu S. Maiti, 2021. "Acceptance sampling inspection plan for the Lindley and power Lindley distributed quality characteristics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1410-1419, December.
    4. Wang, Shaochen & Weiß, Christian H., 2023. "New characterizations of the (discrete) Lindley distribution and their applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 310-322.
    5. A. Shabani & M. Khaleghi Moghadam & A. Gholami & E. Moradi, 2018. "Exponentiated Power Lindley Logarithmic: Model, Properties and Applications," Annals of Data Science, Springer, vol. 5(4), pages 583-613, December.
    6. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    7. Ranjbar V. & Alizadeh M. & Hamedani G. G., 2018. "Extended Exponentiated Power Lindley Distribution," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 621-643, December.
    8. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 597-620, December.
    9. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    10. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    11. Rama Shanker, 2016. "Sujatha Distribution And Its Applications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 391-410, September.
    12. Mehdi Jabbari Nooghabi, 2021. "Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    13. Shukla Kamlesh Kumar & Shanker Rama, 2018. "Power Ishita Distribution And Its Application To Model Lifetime Data," Statistics in Transition New Series, Statistics Poland, vol. 19(1), pages 135-148, March.
    14. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    15. Zeghdoudi Halim & Nouara Lazri & Yahia Djabrane, 2018. "Lindley Pareto Distribution," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 671-692, December.
    16. Ahmed Hurairah & Abdelhakim Alabid, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    17. Ahlam H. Tolba & Chrisogonus K. Onyekwere & Ahmed R. El-Saeed & Najwan Alsadat & Hanan Alohali & Okechukwu J. Obulezi, 2023. "A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    18. Wenhao Gui & Huainian Zhang & Lei Guo, 2017. "The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 316-335, November.
    19. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    20. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:74-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.