Time changes that result in multiple points in continuous-time Markov counting processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2012.08.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," DES - Working Papers. Statistics and Econometrics. WS ws111914, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
- Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2571-2591, November.
- Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96, January.
- M. J. Faddy & J. S. Fenlon, 1999. "Stochastic modelling of the invasion process of nematodes in fly larvae," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 31-37.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
- Bretó, Carles, 2012. "On the infinitesimal dispersion of multivariate Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 720-725.
- King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
- Jonathan Fintzi & Jon Wakefield & Vladimir N. Minin, 2022. "A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts," Biometrics, The International Biometric Society, vol. 78(4), pages 1530-1541, December.
- King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
- Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
- Constantinos Kardaras & Scott Robertson, 2017. "Continuous-time perpetuities and time reversal of diffusions," Finance and Stochastics, Springer, vol. 21(1), pages 65-110, January.
- Cheikh Mbaye & Frédéric Vrins, 2022.
"Affine term structure models: A time‐change approach with perfect fit to market curves,"
Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
- Mbaye, Cheikh & Vrins, Frédéric, 2019. "Affine term-structure models: A time-changed approach with perfect fit to market curves," LIDAM Discussion Papers LFIN 2019005, Université catholique de Louvain, Louvain Finance (LFIN).
- Cheikh Mbaye & Fr'ed'eric Vrins, 2019. "Affine term structure models : a time-changed approach with perfect fit to market curves," Papers 1903.04211, arXiv.org, revised Jan 2020.
- Mbaye, Cheikh & Vrins, Frédéric, 2021. "Affine term structure models: a time-change approach with perfect fit to market curves," LIDAM Reprints LFIN 2021024, Université catholique de Louvain, Louvain Finance (LFIN).
- Luciano, Elisa, 2006.
"Copulas and dependence models in credit risk: diffusions versus jumps,"
MPRA Paper
59638, University Library of Munich, Germany.
- Elisa Luciano, 2007. "Copulas and Dependence models in Credit Risk: Diffusions versus Jumps," ICER Working Papers - Applied Mathematics Series 31-2007, ICER - International Centre for Economic Research.
- Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
- Robert J. Elliott & Carlton-James U. Osakwe, 2006. "Option Pricing for Pure Jump Processes with Markov Switching Compensators," Finance and Stochastics, Springer, vol. 10(2), pages 250-275, April.
- Farzad Fard & Ning Rong, 2014. "Pricing and managing risks of ruin contingent life annuities under regime switching variance gamma process," Annals of Finance, Springer, vol. 10(2), pages 315-332, May.
- Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
- Ulze, Markus & Stadler, Johannes & Rathgeber, Andreas W., 2021. "No country for old distributions? On the comparison of implied option parameters between the Brownian motion and variance gamma process," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 163-184.
- Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
- Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
- Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
- Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
- Zhang, Li-Hua & Zhang, Wei-Guo & Xu, Wei-Jun & Xiao, Wei-Lin, 2012. "The double exponential jump diffusion model for pricing European options under fuzzy environments," Economic Modelling, Elsevier, vol. 29(3), pages 780-786.
- S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
More about this item
Keywords
Subordination; Change of time; Compound Markov counting process; Non-linear birth–death process; Infinitesimal over-dispersion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2229-2234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.