IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v107y2022icp269-287.html
   My bibliography  Save this article

Multivariate claim processes with rough intensities: Properties and estimation

Author

Listed:
  • Hainaut, Donatien

Abstract

A Rough process shares most of features of fractional Brownian motion with a small Hurst index and its sample paths exhibit a high ruggedness compared to those of a Brownian motion. This article studies a multivariate claim process in which the instantaneous probability of claim occurrences has a rough dynamic. In this setting, the claim arrival intensities have an infinite quadratic variation and are not semi-martingales. Nevertheless, the joint moment generating function of claim processes and the integral of claim arrival intensities admits a representation in terms of solutions of fractional differential equations. A numerical procedure is next proposed to filter the most likely sample path of rough intensities from time-series of claims. To illustrate this work, we estimate one- and two-dimensional rough models to time-series of cyber-attacks targeting medical and other services in the US from 2014 to 2018.

Suggested Citation

  • Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.
  • Handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:269-287
    DOI: 10.1016/j.insmatheco.2022.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722001020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Discussion Papers ISBA 2021026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
    5. Cheung, Eric C.K. & Rabehasaina, Landy & Woo, Jae-Kyung & Xu, Ran, 2019. "Asymptotic correlation structure of discounted Incurred But Not Reported claims under fractional Poisson arrival process," European Journal of Operational Research, Elsevier, vol. 276(2), pages 582-601.
    6. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 406-424.
    7. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    8. Hainaut, Donatien, 2021. "A fractional multi-states model for insurance," LIDAM Reprints ISBA 2021014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Eduardo Abi Jaber & Omar El Euch, 2019. "Multi-factor approximation of rough volatility models," Post-Print hal-01697117, HAL.
    10. Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Reprints ISBA 2021051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Corina D. Constantinescu & Jorge M. Ramirez & Wei R. Zhu, 2019. "An application of fractional differential equations to risk theory," Finance and Stochastics, Springer, vol. 23(4), pages 1001-1024, October.
    12. Hainaut, Donatien, 2021. "A fractional multi-states model for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 120-132.
    13. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," LIDAM Reprints ISBA 2021046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Jumarie, Guy, 2005. "Merton's model of optimal portfolio in a Black-Scholes Market driven by a fractional Brownian motion with short-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 585-598, December.
    15. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    16. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    17. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    18. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    19. Hainaut, Donatien, 2021. "A fractional multi-states model for insurance," LIDAM Discussion Papers ISBA 2021019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Dupret, Jean-Loup & Barbarin, Jérôme & Hainaut , Donatien, 2022. "Impact of rough stochastic volatility models on long-term life insurance pricing," LIDAM Reprints ISBA 2022022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," LIDAM Discussion Papers ISBA 2021028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hainaut, Donatien, 2022. "Multivariate rough claim processes: properties and estimation," LIDAM Discussion Papers ISBA 2022002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Hainaut, Donatien, 2022. "Pricing of spread and exchange options in a rough jump-diffusion market," LIDAM Discussion Papers ISBA 2022012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    6. Hainaut, Donatien & Chen, Maggie & Scalas, Enrico, 2023. "The rough Hawkes process," LIDAM Discussion Papers ISBA 2023007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    8. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    9. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    10. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    11. Hainaut, Donatien, 2023. "A mutually exciting rough jump diffusion for financial modelling," LIDAM Discussion Papers ISBA 2023011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    13. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    14. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    16. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    17. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    18. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    19. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    20. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.

    More about this item

    Keywords

    Fractional Brownian motion; Rough volatility; Cox process; Compound Poisson process; Cyber-risk;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:269-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.