IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v198y2023i3d10.1007_s10957-023-02265-6.html
   My bibliography  Save this article

An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update

Author

Listed:
  • Xiaoyu Wu

    (China University of Mining and Technology)

  • Hu Shao

    (China University of Mining and Technology)

  • Pengjie Liu

    (China University of Mining and Technology)

  • Yue Zhuo

    (China University of Mining and Technology)

Abstract

Combining the derivative-free projection with inertial technique, we propose a hybrid inertial spectral conjugate gradient projection method for solving constrained nonlinear monotone equations. The conjugate parameter is a hybrid modification based on the memoryless BFGS update. The spectral parameter is obtained from quasi-Newton equations and double-truncated to ensure the sufficient descent. The search direction with a restart procedure satisfies sufficient descent condition and the trust region property at each iteration, independent of the choice of line search. We also investigate the theoretical properties, such as the global convergence and linear convergence rate, of the inertial projection method under normal assumptions. Numerical performances indicate the superiority of the proposed method in solving large-scale equations and restoring the blurred images contaminated by the Gaussian noise.

Suggested Citation

  • Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.
  • Handle: RePEc:spr:joptap:v:198:y:2023:i:3:d:10.1007_s10957-023-02265-6
    DOI: 10.1007/s10957-023-02265-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02265-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02265-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    2. Parvaneh Faramarzi & Keyvan Amini, 2019. "A Modified Spectral Conjugate Gradient Method with Global Convergence," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 667-690, August.
    3. Predrag S. Stanimirović & Branislav Ivanov & Snežana Djordjević & Ivona Brajević, 2018. "New Hybrid Conjugate Gradient and Broyden–Fletcher–Goldfarb–Shanno Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 860-884, September.
    4. Papp, Zoltan & Rapajić, Sanja, 2015. "FR type methods for systems of large-scale nonlinear monotone equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 816-823.
    5. Gao, Peiting & He, Chuanjiang & Liu, Yang, 2019. "An adaptive family of projection methods for constrained monotone nonlinear equations with applications," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 1-16.
    6. XiaoLiang Dong & Hongwei Liu & Yubo He, 2015. "A Self-Adjusting Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 225-241, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    2. Parvaneh Faramarzi & Keyvan Amini, 2021. "A spectral three-term Hestenes–Stiefel conjugate gradient method," 4OR, Springer, vol. 19(1), pages 71-92, March.
    3. Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Salem Mahdi & Ali Wagdy Mohamed, 2022. "A Hybrid Stochastic Deterministic Algorithm for Solving Unconstrained Optimization Problems," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    4. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    5. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    6. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    7. Zhifeng Dai, 2017. "Comments on Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 286-291, October.
    8. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    9. Morteza Kimiaei & Farzad Rahpeymaii, 2019. "A new nonmonotone line-search trust-region approach for nonlinear systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 199-232, July.
    10. Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    11. Dong, Xiao Liang & Liu, Hong Wei & He, Yu Bo, 2015. "New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 606-617.
    12. Gonglin Yuan & Xiaoliang Wang & Zhou Sheng, 2020. "The Projection Technique for Two Open Problems of Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 590-619, August.
    13. Salihu, Nasiru & Kumam, Poom & Sulaiman, Ibrahim Mohammed & Arzuka, Ibrahim & Kumam, Wiyada, 2024. "An efficient Newton-like conjugate gradient method with restart strategy and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 354-372.
    14. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    15. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    16. Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
    17. Hongwei Liu & Zexian Liu, 2019. "An Efficient Barzilai–Borwein Conjugate Gradient Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 879-906, March.
    18. Khalid Abdulaziz Alnowibet & Salem Mahdi & Ahmad M. Alshamrani & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems," Mathematics, MDPI, vol. 10(19), pages 1-37, October.
    19. Gao, Peiting & He, Chuanjiang & Liu, Yang, 2019. "An adaptive family of projection methods for constrained monotone nonlinear equations with applications," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 1-16.
    20. Auwal Bala Abubakar & Poom Kumam & Hassan Mohammad & Aliyu Muhammed Awwal & Kanokwan Sitthithakerngkiet, 2019. "A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications," Mathematics, MDPI, vol. 7(8), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:198:y:2023:i:3:d:10.1007_s10957-023-02265-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.