IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v359y2019icp1-16.html
   My bibliography  Save this article

An adaptive family of projection methods for constrained monotone nonlinear equations with applications

Author

Listed:
  • Gao, Peiting
  • He, Chuanjiang
  • Liu, Yang

Abstract

An adaptive class of conjugate gradient methods is proposed in this paper, which all possess descent property under strong-wolfe line search. The adaptive parameter in the search direction is determined by minimizing the distance between relative matrix and self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two formulas of the adaptive parameter are further obtained, which are presented as those given by Oren and Luenberger (1973/74) and respectively Oren and Spedicato (1976). By projection technology, two adaptive projection algorithms are developed for solving monotone nonlinear equations with convex constraints. Some numerical comparisons show that these two algorithms are efficient. Last, the proposed algorithms are used to recover a sparse signal from incomplete and contaminated sampling measurements; the results are promising.

Suggested Citation

  • Gao, Peiting & He, Chuanjiang & Liu, Yang, 2019. "An adaptive family of projection methods for constrained monotone nonlinear equations with applications," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 1-16.
  • Handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:1-16
    DOI: 10.1016/j.amc.2019.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319302723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhifeng & Chen, Xiaohong & Wen, Fenghua, 2015. "A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 378-386.
    2. XiaoLiang Dong & Hongwei Liu & Yubo He, 2015. "A Self-Adjusting Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 225-241, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliyu Yusuf & Nibron Haggai Manjak & Hassan Mohammad & Aliyu Ibrahim Kiri & Auwal Bala Abubakar, 2024. "A Solution Method for Nonlinear Monotone Equations via Hybrid Spectral Conjugate Gradient and Signal Recovery Problems," SN Operations Research Forum, Springer, vol. 5(2), pages 1-16, June.
    2. Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhifeng Dai, 2017. "Comments on Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 286-291, October.
    2. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    3. Dai, Zhifeng & Zhou, Huiting & Wen, Fenghua & He, Shaoyi, 2020. "Efficient predictability of stock return volatility: The role of stock market implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.
    5. Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    6. Dong, Xiao Liang & Liu, Hong Wei & He, Yu Bo, 2015. "New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 606-617.
    7. Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
    8. Hongwei Liu & Zexian Liu, 2019. "An Efficient Barzilai–Borwein Conjugate Gradient Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 879-906, March.
    9. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.