IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189290.html
   My bibliography  Save this article

An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints

Author

Listed:
  • Yong Li
  • Gonglin Yuan
  • Zhou Sheng

Abstract

It is well known that the active set algorithm is very effective for smooth box constrained optimization. Many achievements have been obtained in this field. We extend the active set method to nonsmooth box constrained optimization problems, using the Moreau-Yosida regularization technique to make the objective function smooth. A limited memory BFGS method is introduced to decrease the workload of the computer. The presented algorithm has these properties: (1) all iterates are feasible and the sequence of objective functions is decreasing; (2) rapid changes in the active set are allowed; (3) the subproblem is a lower dimensional system of linear equations. The global convergence of the new method is established under suitable conditions and numerical results show that the method is effective for large-scale nonsmooth problems (5,000 variables).

Suggested Citation

  • Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
  • Handle: RePEc:plo:pone00:0189290
    DOI: 10.1371/journal.pone.0189290
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189290
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189290&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Z. Zhang & N. Y. Deng & L. H. Chen, 1999. "New Quasi-Newton Equation and Related Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 147-167, July.
    2. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    3. Chengxian Xu & Jianzhong Zhang, 2001. "A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 213-234, March.
    4. Gonglin Yuan & Zengxin Wei & Zhongxing Wang, 2013. "Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 54(1), pages 45-64, January.
    5. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    6. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    7. Gonglin Yuan & Zengxin Wei, 2010. "Convergence analysis of a modified BFGS method on convex minimizations," Computational Optimization and Applications, Springer, vol. 47(2), pages 237-255, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsegay Giday Woldu & Haibin Zhang & Xin Zhang & Yemane Hailu Fissuh, 2020. "A Modified Nonlinear Conjugate Gradient Algorithm for Large-Scale Nonsmooth Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 223-238, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    2. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    3. Gonglin Yuan & Xiaoliang Wang & Zhou Sheng, 2020. "The Projection Technique for Two Open Problems of Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 590-619, August.
    4. Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
    5. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    6. Tsegay Giday Woldu & Haibin Zhang & Xin Zhang & Yemane Hailu Fissuh, 2020. "A Modified Nonlinear Conjugate Gradient Algorithm for Large-Scale Nonsmooth Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 223-238, April.
    7. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    8. Mehiddin Al-Baali & Humaid Khalfan, 2012. "A combined class of self-scaling and modified quasi-Newton methods," Computational Optimization and Applications, Springer, vol. 52(2), pages 393-408, June.
    9. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.
    10. S. Bojari & M. R. Eslahchi, 2020. "Global convergence of a family of modified BFGS methods under a modified weak-Wolfe–Powell line search for nonconvex functions," 4OR, Springer, vol. 18(2), pages 219-244, June.
    11. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    12. Zhanwen Shi & Guanyu Yang & Yunhai Xiao, 2016. "A limited memory BFGS algorithm for non-convex minimization with applications in matrix largest eigenvalue problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 243-264, April.
    13. Yueting, Yang & Chengxian, Xu, 2007. "A compact limited memory method for large scale unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 180(1), pages 48-56, July.
    14. Mingyuan Cao & Qingdao Huang & Chaoqian Li & Yueting Yang, 2020. "A Subspace Modified Broyden–Fletcher–Goldfarb–Shanno Method for $$\mathcal {B}$$B-eigenvalues of Symmetric Tensors," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 419-432, February.
    15. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    16. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    17. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    18. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    19. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    20. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.