IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i8p745-d257949.html
   My bibliography  Save this article

A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications

Author

Listed:
  • Auwal Bala Abubakar

    (KMUTTFixed Point Research Laboratory, SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
    Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano 700241, Nigeria)

  • Poom Kumam

    (KMUTTFixed Point Research Laboratory, SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
    Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan)

  • Hassan Mohammad

    (Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano 700241, Nigeria)

  • Aliyu Muhammed Awwal

    (KMUTTFixed Point Research Laboratory, SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
    Department of Mathematics, Faculty of Science, Gombe State University, Gombe 760214, Nigeria)

  • Kanokwan Sitthithakerngkiet

    (Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand)

Abstract

One of the fastest growing and efficient methods for solving the unconstrained minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have been made to extend the CG method for solving monotone nonlinear equations. In this research article, we present a modification of the Fletcher–Reeves (FR) conjugate gradient projection method for constrained monotone nonlinear equations. The method possesses sufficient descent property and its global convergence was proved using some appropriate assumptions. Two sets of numerical experiments were carried out to show the good performance of the proposed method compared with some existing ones. The first experiment was for solving monotone constrained nonlinear equations using some benchmark test problem while the second experiment was applying the method in signal and image recovery problems arising from compressive sensing.

Suggested Citation

  • Auwal Bala Abubakar & Poom Kumam & Hassan Mohammad & Aliyu Muhammed Awwal & Kanokwan Sitthithakerngkiet, 2019. "A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications," Mathematics, MDPI, vol. 7(8), pages 1-25, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:745-:d:257949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/8/745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/8/745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Weijun & Wang, Fei, 2015. "A PRP-based residual method for large-scale monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 1-7.
    2. Papp, Zoltan & Rapajić, Sanja, 2015. "FR type methods for systems of large-scale nonlinear monotone equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 816-823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abubakar, Auwal Bala & Kumam, Poom & Ibrahim, Abdulkarim Hassan & Chaipunya, Parin & Rano, Sadiya Ali, 2022. "New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 670-683.
    2. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.
    2. Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
    3. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:745-:d:257949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.