Dual extrapolation and its applications for solving variational inequalities and related problems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- NESTEROV, Yurii, 2003. "Excessive gap technique in non-smooth convex minimization," LIDAM Discussion Papers CORE 2003035, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV, Yu., 2003. "Smooth minimization of non-smooth functions," LIDAM Discussion Papers CORE 2003012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- NESTEROV, Yu., 2006. "Cubic regularization of Newton’s method for convex problems with constraints," LIDAM Discussion Papers CORE 2006039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV, Yu., 2005. "Primal-dual subgradient methods for convex problems," LIDAM Discussion Papers CORE 2005067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
- NESTEROV, Yu., 2005. "Minimizing functions with bounded variation of subgradients," LIDAM Discussion Papers CORE 2005079, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aharon Ben-Tal & Arkadi Nemirovski, 2015. "On Solving Large-Scale Polynomial Convex Problems by Randomized First-Order Algorithms," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 474-494, February.
- NESTEROV, Yu, 2003. "Unconstrained convex minimization in relative scale," LIDAM Discussion Papers CORE 2003096, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV, Yurii, 2004. "Smoothing technique and its applications in semidefinite optimization," LIDAM Discussion Papers CORE 2004073, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV, Yu, 2004. "Rounding of convex sets and efficient gradient methods for linear programming problems," LIDAM Discussion Papers CORE 2004004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
More about this item
Keywords
convex optimization; non-smooth optimization; variational inequalities; monotone operators; optimal methods; complexity theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2003068. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.