IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v188y2021i1d10.1007_s10957-020-01785-9.html
   My bibliography  Save this article

Accelerated Diagonal Steepest Descent Method for Unconstrained Multiobjective Optimization

Author

Listed:
  • Mustapha El Moudden

    (Mohammed VI Polytechnic University)

  • Abdelkrim El Mouatasim

    (Ibn Zohr University)

Abstract

In this paper, we propose two methods for solving unconstrained multiobjective optimization problems. First, we present a diagonal steepest descent method, in which, at each iteration, a common diagonal matrix is used to approximate the Hessian of every objective function. This method works directly with the objective functions, without using any kind of a priori chosen parameters. It is proved that accumulation points of the sequence generated by the method are Pareto-critical points under standard assumptions. Based on this approach and on the Nesterov step strategy, an improved version of the method is proposed and its convergence rate is analyzed. Finally, computational experiments are presented in order to analyze the performance of the proposed methods.

Suggested Citation

  • Mustapha El Moudden & Abdelkrim El Mouatasim, 2021. "Accelerated Diagonal Steepest Descent Method for Unconstrained Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 220-242, January.
  • Handle: RePEc:spr:joptap:v:188:y:2021:i:1:d:10.1007_s10957-020-01785-9
    DOI: 10.1007/s10957-020-01785-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01785-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01785-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    2. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    3. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1992. "On the Minimization of Completion Time Variance with a Bicriteria Extension," Operations Research, INFORMS, vol. 40(6), pages 1148-1155, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapha El Moudden & Ahmed El Ghali, 2018. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 719-741, December.
    2. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    3. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    4. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    5. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    6. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    7. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    8. Oliver Stein & Maximilian Volk, 2023. "Generalized Polarity and Weakest Constraint Qualifications in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1156-1190, September.
    9. Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Miguel A. Martínez, 2021. "A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization," Mathematics, MDPI, vol. 9(9), pages 1-28, April.
    10. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    11. Ng, C. T. & Cai, X. & Cheng, T. C. E., 1996. "A tight lower bound for the completion time variance problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 211-213, July.
    12. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    13. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    14. Francisco Salas-Molina & Juan A. Rodriguez-Aguilar & Pablo Díaz-García, 2018. "Selecting cash management models from a multiobjective perspective," Annals of Operations Research, Springer, vol. 261(1), pages 275-288, February.
    15. Miglierina Enrico & Molho Elena & Recchioni Maria Cristina, 2006. "Box-constrained vector optimization: a steepest descent method without “a priori” scalarization," Economics and Quantitative Methods qf0603, Department of Economics, University of Insubria.
    16. Mitrović, Sandra & Baesens, Bart & Lemahieu, Wilfried & De Weerdt, Jochen, 2018. "On the operational efficiency of different feature types for telco Churn prediction," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1141-1155.
    17. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    18. Y. P. Aneja & S. N. Kabadi & A. Nagar, 1998. "Minimizing weighted mean absolute deviation of flow times in single machine systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 297-311, April.
    19. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    20. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:188:y:2021:i:1:d:10.1007_s10957-020-01785-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.