IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i3d10.1007_s10479-021-04033-z.html
   My bibliography  Save this article

The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning

Author

Listed:
  • S. Liu

    (Lehigh University)

  • L. N. Vicente

    (Lehigh University
    Centre for Mathematics of the University of Coimbra (CMUC))

Abstract

Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or unknown, resulting in multi-objective optimization (MOO) problems of stochastic type. We study the stochastic multi-gradient (SMG) method, seen as an extension of the classical stochastic gradient method for single-objective optimization. At each iteration of the SMG method, a stochastic multi-gradient direction is calculated by solving a quadratic subproblem, and it is shown that this direction is biased even when all individual gradient estimators are unbiased. We establish rates to compute a point in the Pareto front, of order similar to what is known for stochastic gradient in both convex and strongly convex cases. The analysis handles the bias in the multi-gradient and the unknown a priori weights of the limiting Pareto point. The SMG method is framed into a Pareto-front type algorithm for calculating an approximation of the entire Pareto front. The Pareto-front SMG algorithm is capable of robustly determining Pareto fronts for a number of synthetic test problems. One can apply it to any stochastic MOO problem arising from supervised machine learning, and we report results for logistic binary classification where multiple objectives correspond to distinct-sources data groups.

Suggested Citation

  • S. Liu & L. N. Vicente, 2024. "The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning," Annals of Operations Research, Springer, vol. 339(3), pages 1119-1148, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-021-04033-z
    DOI: 10.1007/s10479-021-04033-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04033-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04033-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    2. Caballero, Rafael & Cerda, Emilio & del Mar Munoz, Maria & Rey, Lourdes, 2004. "Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 158(3), pages 633-648, November.
    3. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    4. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    5. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    6. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    7. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    8. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    2. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    3. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    4. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    5. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    6. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    7. Mustapha El Moudden & Ahmed El Ghali, 2018. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 719-741, December.
    8. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    9. Young Gwan Lee & Kihyun Park & Hyun Jae Kim & Seong-Hoon Cho, 2023. "Creating portfolios of firm-specific energy R&D investment under market uncertainty," Energy & Environment, , vol. 34(5), pages 1548-1563, August.
    10. Juan Ribes & Jacinto González-Pachón, 2021. "Risk Attitude in Multicriteria Decision Analysis: A Compromise Approach," IJERPH, MDPI, vol. 18(12), pages 1-14, June.
    11. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    12. Jiao Zhao & Tao Wang & Thibaud Monteiro, 2024. "A Bi-Objective Home Health Care Routing and Scheduling Problem under Uncertainty," IJERPH, MDPI, vol. 21(3), pages 1-27, March.
    13. Vieira, D.A.G. & Lisboa, A.C., 2019. "A cutting-plane method to nonsmooth multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 822-829.
    14. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    15. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram, 2020. "On q -Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    16. Yue Zhou-Kangas & Kaisa Miettinen, 2019. "Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 391-413, June.
    17. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    18. Mustapha El Moudden & Abdelkrim El Mouatasim, 2021. "Accelerated Diagonal Steepest Descent Method for Unconstrained Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 220-242, January.
    19. Milford, James & Henrion, Max & Hunter, Chad & Newes, Emily & Hughes, Caroline & Baldwin, Samuel F., 2022. "Energy sector portfolio analysis with uncertainty," Applied Energy, Elsevier, vol. 306(PA).
    20. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-021-04033-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.