IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v198y2023i3d10.1007_s10957-023-02256-7.html
   My bibliography  Save this article

Generalized Polarity and Weakest Constraint Qualifications in Multiobjective Optimization

Author

Listed:
  • Oliver Stein

    (Karlsruhe Institute of Technology (KIT))

  • Maximilian Volk

    (Karlsruhe Institute of Technology (KIT))

Abstract

In Haeser and Ramos (J Optim Theory Appl, 187:469–487, 2020), a generalization of the normal cone from single objective to multiobjective optimization is introduced, along with a weakest constraint qualification such that any local weak Pareto optimal point is a weak Kuhn–Tucker point. We extend this approach to other generalizations of the normal cone and corresponding weakest constraint qualifications, such that local Pareto optimal points are weak Kuhn–Tucker points, local proper Pareto optimal points are weak and proper Kuhn–Tucker points, respectively, and strict local Pareto optimal points of order one are weak, proper and strong Kuhn–Tucker points, respectively. The constructions are based on an appropriate generalization of polarity to pairs of matrices and vectors.

Suggested Citation

  • Oliver Stein & Maximilian Volk, 2023. "Generalized Polarity and Weakest Constraint Qualifications in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1156-1190, September.
  • Handle: RePEc:spr:joptap:v:198:y:2023:i:3:d:10.1007_s10957-023-02256-7
    DOI: 10.1007/s10957-023-02256-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02256-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02256-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, D. J., 1983. "Concepts of proper efficiency," European Journal of Operational Research, Elsevier, vol. 13(2), pages 180-188, June.
    2. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    3. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    4. Mirjam Dür & Bolor Jargalsaikhan & Georg Still, 2015. "First order solutions in conic programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 123-142, October.
    5. Allen Klinger, 1967. "Letter to the Editor—Improper Solutions of the Vector Maximum Problem," Operations Research, INFORMS, vol. 15(3), pages 570-572, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    2. Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Miguel A. Martínez, 2021. "A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization," Mathematics, MDPI, vol. 9(9), pages 1-28, April.
    3. Francisco Salas-Molina & Juan A. Rodriguez-Aguilar & Pablo Díaz-García, 2018. "Selecting cash management models from a multiobjective perspective," Annals of Operations Research, Springer, vol. 261(1), pages 275-288, February.
    4. Mitrović, Sandra & Baesens, Bart & Lemahieu, Wilfried & De Weerdt, Jochen, 2018. "On the operational efficiency of different feature types for telco Churn prediction," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1141-1155.
    5. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    6. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    7. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Papers 1706.01254, arXiv.org.
    8. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    9. Smedberg, Henrik & Bandaru, Sunith, 2023. "Interactive knowledge discovery and knowledge visualization for decision support in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1311-1329.
    10. Seyed Sina Mohri & Meisam Akbarzadeh, 2019. "Locating key stations of a metro network using bi-objective programming: discrete and continuous demand mode," Public Transport, Springer, vol. 11(2), pages 321-340, August.
    11. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    12. Savin Treanţă & Tadeusz Antczak & Tareq Saeed, 2023. "Connections between Non-Linear Optimization Problems and Associated Variational Inequalities," Mathematics, MDPI, vol. 11(6), pages 1-12, March.
    13. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Working Papers hal-01504473, HAL.
    14. Luda Zhao & Bin Wang & Congyong Shen, 2021. "A multi-objective scheduling method for operational coordination time using improved triangular fuzzy number representation," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-31, June.
    15. Majed Hadid & Adel Elomri & Regina Padmanabhan & Laoucine Kerbache & Oualid Jouini & Abdelfatteh El Omri & Amir Nounou & Anas Hamad, 2022. "Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling," IJERPH, MDPI, vol. 19(23), pages 1-34, November.
    16. Mustapha El Moudden & Ahmed El Ghali, 2018. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 719-741, December.
    17. Nguyen, Trung H. & Granger, Julien & Pandya, Deval & Paustian, Keith, 2019. "High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries," Applied Energy, Elsevier, vol. 238(C), pages 1484-1496.
    18. Nomeda Dobrovolskienė & Rima Tamošiūnienė, 2016. "Sustainability-Oriented Financial Resource Allocation in a Project Portfolio through Multi-Criteria Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    19. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    20. Atabaki, Mohammad Saeid & Aryanpur, Vahid, 2018. "Multi-objective optimization for sustainable development of the power sector: An economic, environmental, and social analysis of Iran," Energy, Elsevier, vol. 161(C), pages 493-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:198:y:2023:i:3:d:10.1007_s10957-023-02256-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.