Optimality Analysis of a Class of Semi-infinite Programming Problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-020-01708-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
- Ting-Jang Shiu & Soon-Yi Wu, 2012. "Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 53(1), pages 91-113, September.
- Zhi Guo Feng & Ka Fai Cedric Yiu & Sven Erik Nordholm, 2015. "Performance Limit of Broadband Beamformer Designs in Space and Frequency," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 316-341, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
- Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
- Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
- Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023.
"Prices, profits, proxies, and production,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
- Victor H. Aguiar & Nail Kashaev & Roy Allen, 2018. "Prices, Profits, Proxies, and Production," Papers 1810.04697, arXiv.org, revised Jun 2022.
- Victor H. Aguiar & Nail Kashaev & Roy Allen, 2022. "Prices, Profits, Proxies, and Production," University of Western Ontario, Departmental Research Report Series 20226, University of Western Ontario, Department of Economics.
- Victor H. Aguiar & Roy Allen & Nail Kashaev, 2020. "Prices, Profits, Proxies, and Production," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20202, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
- S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
- Shaojian Qu & Mark Goh & Soon-Yi Wu & Robert Souza, 2014. "Multiobjective DC programs with infinite convex constraints," Journal of Global Optimization, Springer, vol. 59(1), pages 41-58, May.
- Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
- Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
- Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
- Nazih Abderrazzak Gadhi, 2019. "Necessary optimality conditions for a nonsmooth semi-infinite programming problem," Journal of Global Optimization, Springer, vol. 74(1), pages 161-168, May.
- He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
- Rafael Correa & Marco A. López & Pedro Pérez-Aros, 2023. "Optimality Conditions in DC-Constrained Mathematical Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1191-1225, September.
- Takayuki Okuno & Masao Fukushima, 2014. "Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints," Journal of Global Optimization, Springer, vol. 60(1), pages 25-48, September.
- Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
- Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
- Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
- Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
- Giuseppe Caristi & Massimiliano Ferrara, 2017. "Necessary conditions for nonsmooth multiobjective semi-infinite problems using Michel–Penot subdifferential," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 103-113, November.
- David Mogalle & Philipp Seufert & Jan Schwientek & Michael Bortz & Karl-Heinz Küfer, 2024. "Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization," Computational Statistics, Springer, vol. 39(5), pages 2451-2478, July.
More about this item
Keywords
Semi-infinite programming; Fixed-point theorem; Filter design; Beamformer design;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:2:d:10.1007_s10957-020-01708-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.