IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v96y2022i1d10.1007_s00186-021-00764-8.html
   My bibliography  Save this article

On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints

Author

Listed:
  • Holger Berthold

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

  • Holger Heitsch

    (Weierstrass Institute for Applied Analysis and Stochastics (WIAS))

  • René Henrion

    (Weierstrass Institute for Applied Analysis and Stochastics (WIAS))

  • Jan Schwientek

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

Abstract

We present an adaptive grid refinement algorithm to solve probabilistic optimization problems with infinitely many random constraints. Using a bilevel approach, we iteratively aggregate inequalities that provide most information not in a geometric but in a probabilistic sense. This conceptual idea, for which a convergence proof is provided, is then adapted to an implementable algorithm. The efficiency of our approach when compared to naive methods based on uniform grid refinement is illustrated for a numerical test example as well as for a water reservoir problem with joint probabilistic filling level constraints.

Suggested Citation

  • Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
  • Handle: RePEc:spr:mathme:v:96:y:2022:i:1:d:10.1007_s00186-021-00764-8
    DOI: 10.1007/s00186-021-00764-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-021-00764-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-021-00764-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrieu, L. & Henrion, R. & Römisch, W., 2010. "A model for dynamic chance constraints in hydro power reservoir management," European Journal of Operational Research, Elsevier, vol. 207(2), pages 579-589, December.
    2. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    3. N.C.P. Edirisinghe & E.I. Patterson & N. Saadouli, 2000. "Capacity Planning Model for a Multipurpose Water Reservoir with Target-Priority Operation," Annals of Operations Research, Springer, vol. 100(1), pages 273-303, December.
    4. Wim Van Ackooij & René Henrion & Andris Möller & Riadh Zorgati, 2010. "On probabilistic constraints induced by rectangular sets and multivariate normal distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 535-549, June.
    5. Lukáš Adam & Martin Branda & Holger Heitsch & René Henrion, 2020. "Solving joint chance constrained problems using regularization and Benders’ decomposition," Annals of Operations Research, Springer, vol. 292(2), pages 683-709, September.
    6. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    7. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    8. T. González Grandón & H. Heitsch & R. Henrion, 2017. "A joint model of probabilistic/robust constraints for gas transport management in stationary networks," Computational Management Science, Springer, vol. 14(3), pages 443-460, July.
    9. Wim Ackooij & Pedro Pérez-Aros, 2020. "Gradient Formulae for Nonlinear Probabilistic Constraints with Non-convex Quadratic Forms," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 239-269, April.
    10. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    11. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    12. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xun Shen & Satoshi Ito, 2024. "Approximate Methods for Solving Chance-Constrained Linear Programs in Probability Measure Space," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 150-177, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    2. I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
    3. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    4. Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
    5. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    6. Yuan Yuan & Zukui Li & Biao Huang, 2017. "Robust optimization approximation for joint chance constrained optimization problem," Journal of Global Optimization, Springer, vol. 67(4), pages 805-827, April.
    7. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    8. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    9. Jianqiang Cheng & Richard Li-Yang Chen & Habib N. Najm & Ali Pinar & Cosmin Safta & Jean-Paul Watson, 2018. "Chance-constrained economic dispatch with renewable energy and storage," Computational Optimization and Applications, Springer, vol. 70(2), pages 479-502, June.
    10. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).
    11. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    12. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    13. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    14. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.
    15. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    16. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    17. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    18. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    19. L. Jeff Hong & Jun Luo & Barry L. Nelson, 2015. "Chance Constrained Selection of the Best," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 317-334, May.
    20. Fontem, Belleh & Smith, Jeremiah, 2019. "Analysis of a chance-constrained new product risk model with multiple customer classes," European Journal of Operational Research, Elsevier, vol. 272(3), pages 999-1016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:96:y:2022:i:1:d:10.1007_s00186-021-00764-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.