IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i3d10.1007_s10957-020-01736-4.html
   My bibliography  Save this article

Generating Valid Linear Inequalities for Nonlinear Programs via Sums of Squares

Author

Listed:
  • Sönke Behrends

    (University of Goettingen)

  • Anita Schöbel

    (University of Kaiserslautern and Fraunhofer Institute for Industrial Mathematics ITWM)

Abstract

Valid linear inequalities are substantial in linear and convex mixed-integer programming. This article deals with the computation of valid linear inequalities for nonlinear programs. Given a point in the feasible set, we consider the task of computing a tight valid inequality. We reformulate this geometrically as the problem of finding a hyperplane which minimizes the distance to the given point. A characterization of the existence of optimal solutions is given. If the constraints are given by polynomial functions, we show that it is possible to approximate the minimal distance by solving a hierarchy of sum of squares programs. Furthermore, using a result from real algebraic geometry, we show that the hierarchy converges if the relaxed feasible set is bounded. We have implemented our approach, showing that our ideas work in practice.

Suggested Citation

  • Sönke Behrends & Anita Schöbel, 2020. "Generating Valid Linear Inequalities for Nonlinear Programs via Sums of Squares," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 911-935, September.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01736-4
    DOI: 10.1007/s10957-020-01736-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01736-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01736-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Plastria & E. Carrizosa, 2001. "Gauge Distances and Median Hyperplanes," Journal of Optimization Theory and Applications, Springer, vol. 110(1), pages 173-182, July.
    2. R. C. Jeroslow, 1973. "There Cannot be any Algorithm for Integer Programming with Quadratic Constraints," Operations Research, INFORMS, vol. 21(1), pages 221-224, February.
    3. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    4. Gennadiy Averkov & Christian Wagner & Robert Weismantel, 2011. "Maximal Lattice-Free Polyhedra: Finiteness and an Explicit Description in Dimension Three," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 721-742, November.
    5. Michele Conforti & Gérard Cornuéjols & Aris Daniilidis & Claude Lemaréchal & Jérôme Malick, 2015. "Cut-Generating Functions and S -Free Sets," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 276-391, February.
    6. James E. Ward & Richard E. Wendell, 1985. "Using Block Norms for Location Modeling," Operations Research, INFORMS, vol. 33(5), pages 1074-1090, October.
    7. V. Jeyakumar & J. B. Lasserre & G. Li, 2014. "On Polynomial Optimization Over Non-compact Semi-algebraic Sets," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 707-718, December.
    8. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    9. MARCHAND, Hugues & MARTIN, Alexander & WEISMANTEL, Robert & WOLSEY, Laurence, 2002. "Cutting planes in integer and mixed integer programming," LIDAM Reprints CORE 1567, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Amir Ali Ahmadi & Georgina Hall, 2019. "On the Construction of Converging Hierarchies for Polynomial Optimization Based on Certificates of Global Positivity," Management Science, INFORMS, vol. 44(4), pages 1192-1207, November.
    11. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
    2. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    3. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    4. Peter Kirst & Oliver Stein, 2019. "Global optimization of generalized semi-infinite programs using disjunctive programming," Journal of Global Optimization, Springer, vol. 73(1), pages 1-25, January.
    5. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    6. Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.
    7. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    8. Hatim Djelassi & Alexander Mitsos, 2021. "Global Solution of Semi-infinite Programs with Existence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 863-881, March.
    9. Sönke Behrends & Ruth Hübner & Anita Schöbel, 2018. "Norm bounds and underestimators for unconstrained polynomial integer minimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 73-107, February.
    10. Feng Guo & Xiaoxia Sun, 2020. "On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 669-699, April.
    11. Carrizosa, Emilio & Goerigk, Marc & Schöbel, Anita, 2017. "A biobjective approach to recoverable robustness based on location planning," European Journal of Operational Research, Elsevier, vol. 261(2), pages 421-435.
    12. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    13. Feng Guo & Liguo Jiao, 2021. "On solving a class of fractional semi-infinite polynomial programming problems," Computational Optimization and Applications, Springer, vol. 80(2), pages 439-481, November.
    14. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    15. Marendet, Antoine & Goldsztejn, Alexandre & Chabert, Gilles & Jermann, Christophe, 2020. "A standard branch-and-bound approach for nonlinear semi-infinite problems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 438-452.
    16. Hamidur Rahman & Ashutosh Mahajan, 2020. "On the facet defining inequalities of the mixed-integer bilinear covering set," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 545-575, December.
    17. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    18. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    19. Angilella, Vincent & Chardy, Matthieu & Ben-Ameur, Walid, 2018. "Fiber cable network design in tree networks," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1086-1106.
    20. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01736-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.