IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i1p91-113.html
   My bibliography  Save this article

Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems

Author

Listed:
  • Ting-Jang Shiu
  • Soon-Yi Wu

Abstract

In this paper, we present an algorithm to solve nonlinear semi-infinite programming (NSIP) problems. To deal with the nonlinear constraint, Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007 ) suggest an adaptive convexification relaxation to approximate the nonlinear constraint function. The αBB method, used widely in global optimization, is applied to construct the convexification relaxation. We then combine the idea of the cutting plane method with the convexification relaxation to propose a new algorithm to solve NSIP problems. With some given tolerances, our algorithm terminates in a finite number of iterations and obtains an approximate stationary point of the NSIP problems. In addition, some NSIP application examples are implemented by the method proposed in this paper, such as the proportional-integral-derivative controller design problem and the nonlinear finite impulse response filter design problem. Based on our numerical experience, we demonstrate that our algorithm enhances the computational speed for solving NSIP problems. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Ting-Jang Shiu & Soon-Yi Wu, 2012. "Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 53(1), pages 91-113, September.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113
    DOI: 10.1007/s10589-011-9452-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9452-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-011-9452-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K.L. Teo & X.Q. Yang & L.S. Jennings, 2000. "Computational Discretization Algorithms for Functional Inequality Constrained Optimization," Annals of Operations Research, Springer, vol. 98(1), pages 215-234, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    2. Zhi Guo Feng & Fei Chen & Lin Chen & Ka Fai Cedric Yiu, 2020. "Optimality Analysis of a Class of Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 398-411, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    2. Liping Zhang & Soon-Yi Wu, 2011. "A new approach to the weighted peak-constrained least-square error FIR digital filter optimal design problem," Computational Optimization and Applications, Springer, vol. 50(2), pages 445-461, October.
    3. Xiaojiao Tong & Soon-Yi Wu & Renjun Zhou, 2010. "New approach for the nonlinear programming with transient stability constraints arising from power systems," Computational Optimization and Applications, Springer, vol. 45(3), pages 495-520, April.
    4. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    5. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.
    6. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    7. Ping Jin & Chen Ling & Huifei Shen, 2015. "A smoothing Levenberg–Marquardt algorithm for semi-infinite programming," Computational Optimization and Applications, Springer, vol. 60(3), pages 675-695, April.
    8. C. Ling & L. Q. Qi & G. L. Zhou & S. Y. Wu, 2006. "Global Convergence of a Robust Smoothing SQP Method for Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 147-164, April.
    9. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.