IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i3p617-631.html
   My bibliography  Save this article

Enhancing computations of nondominated solutions in MOLFP via reference points

Author

Listed:
  • João Costa
  • Maria Alves

Abstract

In previous work, Costa and Alves (J Math Sci 161:(6)820–831, 2009 ; 2011 ) have presented Branch & Bound and Branch & Cut techniques that allow for the effective computation of nondominated solutions, associated with reference points, of multi-objective linear fractional programming (MOLFP) problems of medium dimensions (ten objective functions, hundreds of variables and constraints). In this paper we present some results that enhance those computations. Firstly, it is proved that the use of a special kind of achievement scalarizing function guarantees that the computation error does not depend on the dimension of the problem. Secondly, a new cut for the Branch & Cut technique is presented. The proof that this new cut is better than the one in Costa and Alves ( 2011 ) is presented, guaranteeing that it reduces the region to explore. Some computational tests to assess the impact of the new cut on the performance of the Branch & Cut technique are presented. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • João Costa & Maria Alves, 2013. "Enhancing computations of nondominated solutions in MOLFP via reference points," Journal of Global Optimization, Springer, vol. 57(3), pages 617-631, November.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:3:p:617-631
    DOI: 10.1007/s10898-013-0074-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0074-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0074-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. João Paulo Costa & Maria João Alves, 2011. "A Branch & Cut Algorithm to Compute Nondominated Solutions in MOLFP via Reference Points," Operations Research Proceedings, in: Bo Hu & Karl Morasch & Stefan Pickl & Markus Siegle (ed.), Operations Research Proceedings 2010, pages 353-358, Springer.
    3. Metev, Boyan & Gueorguieva, Dessislava, 2000. "A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 386-390, October.
    4. Jonathan S. H. Kornbluth & Ralph E. Steuer, 1981. "Multiple Objective Linear Fractional Programming," Management Science, INFORMS, vol. 27(9), pages 1024-1039, September.
    5. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Costa, Joao Paulo, 2007. "Computing non-dominated solutions in MOLFP," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1464-1475, September.
    7. Schaible, Siegfried, 1981. "Fractional programming: Applications and algorithms," European Journal of Operational Research, Elsevier, vol. 7(2), pages 111-120, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chergui, M. E-A & Moulai, M., 2007. "An exact method for a discrete multiobjective linear fractional optimization," MPRA Paper 12097, University Library of Munich, Germany, revised 09 Jan 2008.
    2. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    3. S. Morteza Mirdehghan & Hassan Rostamzadeh, 2016. "Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional Programming: A Linear Programming Technique," Journal of Optimization, Hindawi, vol. 2016, pages 1-8, September.
    4. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    5. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    6. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
    7. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    8. Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
    9. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    10. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    11. Davtalab-Olyaie, Mostafa & Asgharian, Masoud, 2021. "On Pareto-optimality in the cross-efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 288(1), pages 247-257.
    12. Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.
    13. Goedhart, Marc H. & Spronk, Jaap, 1995. "Financial planning with fractional goals," European Journal of Operational Research, Elsevier, vol. 82(1), pages 111-124, April.
    14. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    15. Riccardo Cambini, 1995. "Funzioni scalari affini generalizzate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 18(2), pages 153-163, September.
    16. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Harold P. Benson, 2006. "Maximizing the ratio of two convex functions over a convex set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 309-317, June.
    18. Abderrahman Bouhamidi & Mohammed Bellalij & Rentsen Enkhbat & Khalid Jbilou & Marcos Raydan, 2018. "Conditional Gradient Method for Double-Convex Fractional Programming Matrix Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 163-177, January.
    19. Washington Alves Oliveira & Marko Antonio Rojas-Medar & Antonio Beato-Moreno & Maria Beatriz Hernández-Jiménez, 2019. "Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems," Journal of Global Optimization, Springer, vol. 74(2), pages 233-253, June.
    20. Lara, P. & Stancu-Minasian, I., 1999. "Fractional programming: a tool for the assessment of sustainability," Agricultural Systems, Elsevier, vol. 62(2), pages 131-141, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:3:p:617-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.