IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02463159.html
   My bibliography  Save this paper

An Exact Method for Assortment Optimization under the Nested Logit Model

Author

Listed:
  • Laurent Alfandari

    (ESSEC Business School)

  • Alborz Hassanzadeh

    (ESSEC Business School)

  • Ivana Ljubić

    (ESSEC Business School)

Abstract

We study the problem of finding an optimal assortment of products maximizing the expected revenue, in which customer preferences are modeled using a Nested Logit choice model. This problem is known to be polynomially solvable in a specific case and NP-hard otherwise, with only approximation algorithms existing in the literature. We provide an exact general method that embeds a tailored Branch-and-Bound algorithm into a fractional programming framework. Contrary to the existing literature, in which assumptions are imposed on either the structure of nests or the combination and characteristics of products, no assumptions on the input data are imposed. Although our approach is not polynomial in the input size, it can solve the most general problem setting for large-size instances. We show that the fractional programming scheme's parameterized subproblem, a highly non-linear binary optimization problem, is decomposable by nests, which is the primary advantage of the approach. To solve the subproblem for each nest, we propose a two-stage approach. In the first stage, we fix a large set of variables based on the single-nest subproblem's newly-derived structural properties. This can significantly reduce the problem size. In the second stage, we design a tailored Branch-and-Bound algorithm with problem-specific upper bounds. Numerical results show that the approach is able to solve assortment instances with five nests and with up to 5,000 products per nest. The most challenging instances for our approach are those with a mix of nests' dissimilarity parameters, where some of them are smaller than one and others are greater than one. Keywords: combinatorial optimization, revenue management, assortment optimization, fractional programming, nested logit.

Suggested Citation

  • Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
  • Handle: RePEc:hal:wpaper:hal-02463159
    Note: View the original document on HAL open archive server: https://essec.hal.science/hal-02463159v2
    as

    Download full text from publisher

    File URL: https://essec.hal.science/hal-02463159v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    2. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2008. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, chapter 0, pages 99-153, Springer.
    3. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    4. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    5. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    6. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    7. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
    8. Vineet Goyal & Retsef Levi & Danny Segev, 2016. "Near-Optimal Algorithms for the Assortment Planning Problem Under Dynamic Substitution and Stochastic Demand," Operations Research, INFORMS, vol. 64(1), pages 219-235, February.
    9. Jacob B. Feldman & Huseyin Topaloglu, 2015. "Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model," Operations Research, INFORMS, vol. 63(4), pages 812-822, August.
    10. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    11. Samyukta Sethuraman & Sergiy Butenko, 2015. "The maximum ratio clique problem," Computational Management Science, Springer, vol. 12(1), pages 197-218, January.
    12. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    13. Claudia Archetti & Guy Desaulniers & M. Grazia Speranza, 2017. "Minimizing the logistic ratio in the inventory routing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 289-306, December.
    14. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
    2. Agrawal, Priyank & Tulabandhula, Theja & Avadhanula, Vashist, 2023. "A tractable online learning algorithm for the multinomial logit contextual bandit," European Journal of Operational Research, Elsevier, vol. 310(2), pages 737-750.
    3. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin, 2023. "The follower competitive facility location problem under the nested logit choice rule," European Journal of Operational Research, Elsevier, vol. 310(2), pages 834-846.
    4. Shaoning Han & Andrés Gómez & Oleg A. Prokopyev, 2022. "Fractional 0–1 programming and submodularity," Journal of Global Optimization, Springer, vol. 84(1), pages 77-93, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfandari, Laurent & Hassanzadeh, Alborz & Ljubic, Ivana, 2020. "An Exact Method for Assortment Optimization under the Nested Logit Model," ESSEC Working Papers WP2001, ESSEC Research Center, ESSEC Business School, revised 2020.
    2. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    3. Wang, Mengmeng & Zhang, Xun & Li, Xiaolong, 2023. "Multiple-purchase choice model: estimation and optimization," International Journal of Production Economics, Elsevier, vol. 265(C).
    4. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    5. Julia Heger & Robert Klein, 2024. "Assortment optimization: a systematic literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1099-1161, December.
    6. Çömez-Dolgan, Nagihan & Moussawi-Haidar, Lama & Jaber, Mohamad Y. & Cephe, Ecem, 2022. "Capacitated assortment planning of a multi-location system under transshipments," International Journal of Production Economics, Elsevier, vol. 251(C).
    7. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
    8. Yanqiao Wang & Zuo‐Jun Max Shen, 2021. "Constrained Assortment Optimization Problem under the Multilevel Nested Logit Model," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3467-3480, October.
    9. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
    10. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    11. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    12. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    13. Rui Chen & Hai Jiang, 2020. "Capacitated assortment and price optimization under the nested logit model," Journal of Global Optimization, Springer, vol. 77(4), pages 895-918, August.
    14. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    15. Jacob Feldman & Alice Paul & Huseyin Topaloglu, 2019. "Technical Note—Assortment Optimization with Small Consideration Sets," Operations Research, INFORMS, vol. 67(5), pages 1283-1299, September.
    16. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    17. Hekimoğlu, Mustafa & Sevim, Ismail & Aksezer, Çağlar & Durmuş, İpek, 2019. "Assortment optimization with log-linear demand: Application at a Turkish grocery store," Journal of Retailing and Consumer Services, Elsevier, vol. 50(C), pages 199-214.
    18. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    19. Kris Johnson Ferreira & Joel Goh, 2021. "Assortment Rotation and the Value of Concealment," Management Science, INFORMS, vol. 67(3), pages 1489-1507, March.
    20. Ali Aouad & Retsef Levi & Danny Segev, 2019. "Approximation Algorithms for Dynamic Assortment Optimization Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 487-511, May.

    More about this item

    Keywords

    nested logit; fractional programming; combinatorial optimization; revenue management; assortment optimization;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02463159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.